Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/124294
Título: | MDIW-13: a New Multi-Lingual and Multi-Script Database and Benchmark for Script Identification | Autores/as: | Ferrer Ballester, Miguel Ángel Das, Abhijit Díaz Cabrera, Moisés Morales Moreno, Aythami Carmona Duarte, María Cristina Pal, Umapada |
Clasificación UNESCO: | 120304 Inteligencia artificial 33 Ciencias tecnológicas |
Palabras clave: | Deep learning for script identification Document analysis Handcrafted features for script identification Multi-lingual database Multi-script database, et al. |
Fecha de publicación: | 2023 | Proyectos: | Modelado cinemático 3D para la caracterización del movimiento humano, animal y robótico | Publicación seriada: | Cognitive Computation | Resumen: | Script identification plays a vital role in applications that involve handwriting and document analysis within a multi-script and multi-lingual environment. Moreover, it exhibits a profound connection with human cognition. This paper provides a new database for benchmarking script identification algorithms, which contains both printed and handwritten documents collected from a wide variety of scripts, such as Arabic, Bengali (Bangla), Gujarati, Gurmukhi, Devanagari, Japanese, Kannada, Malayalam, Oriya, Roman, Tamil, Telugu, and Thai. The dataset consists of 1,135 documents scanned from local newspaper and handwritten letters as well as notes from different native writers. Further, these documents are segmented into lines and words, comprising a total of 13,979 and 86,655 lines and words, respectively, in the dataset. Easy-to-go benchmarks are proposed with handcrafted and deep learning methods. The benchmark includes results at the document, line, and word levels with printed and handwritten documents. Results of script identification independent of the document/line/word level and independent of the printed/handwritten letters are also given. The new multi-lingual database is expected to create new script identifiers, present various challenges, including identifying handwritten and printed samples and serve as a foundation for future research in script identification based on the reported results of the three benchmarks. | URI: | http://hdl.handle.net/10553/124294 | ISSN: | 1866-9956 | DOI: | 10.1007/s12559-023-10193-w | Fuente: | Cognitive Computation [ISSN 1866-9956], (2023) |
Colección: | Artículos |
Visitas
75
actualizado el 04-may-2024
Descargas
42
actualizado el 04-may-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.