Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/124294
Campo DC Valoridioma
dc.contributor.authorFerrer Ballester, Miguel Ángelen_US
dc.contributor.authorDas, Abhijiten_US
dc.contributor.authorDíaz Cabrera, Moisésen_US
dc.contributor.authorMorales Moreno, Aythamien_US
dc.contributor.authorCarmona Duarte, María Cristinaen_US
dc.contributor.authorPal, Umapadaen_US
dc.date.accessioned2023-09-04T18:10:03Z-
dc.date.available2023-09-04T18:10:03Z-
dc.date.issued2023en_US
dc.identifier.issn1866-9956en_US
dc.identifier.urihttp://hdl.handle.net/10553/124294-
dc.description.abstractScript identification plays a vital role in applications that involve handwriting and document analysis within a multi-script and multi-lingual environment. Moreover, it exhibits a profound connection with human cognition. This paper provides a new database for benchmarking script identification algorithms, which contains both printed and handwritten documents collected from a wide variety of scripts, such as Arabic, Bengali (Bangla), Gujarati, Gurmukhi, Devanagari, Japanese, Kannada, Malayalam, Oriya, Roman, Tamil, Telugu, and Thai. The dataset consists of 1,135 documents scanned from local newspaper and handwritten letters as well as notes from different native writers. Further, these documents are segmented into lines and words, comprising a total of 13,979 and 86,655 lines and words, respectively, in the dataset. Easy-to-go benchmarks are proposed with handcrafted and deep learning methods. The benchmark includes results at the document, line, and word levels with printed and handwritten documents. Results of script identification independent of the document/line/word level and independent of the printed/handwritten letters are also given. The new multi-lingual database is expected to create new script identifiers, present various challenges, including identifying handwritten and printed samples and serve as a foundation for future research in script identification based on the reported results of the three benchmarks.en_US
dc.languageengen_US
dc.relationModelado cinemático 3D para la caracterización del movimiento humano, animal y robóticoen_US
dc.relation.ispartofCognitive Computationen_US
dc.sourceCognitive Computation [ISSN 1866-9956], (2023)en_US
dc.subject120304 Inteligencia artificialen_US
dc.subject33 Ciencias tecnológicasen_US
dc.subject.otherDeep learning for script identificationen_US
dc.subject.otherDocument analysisen_US
dc.subject.otherHandcrafted features for script identificationen_US
dc.subject.otherMulti-lingual databaseen_US
dc.subject.otherMulti-script databaseen_US
dc.subject.otherOptical character recognitionen_US
dc.subject.otherScript identificationen_US
dc.titleMDIW-13: a New Multi-Lingual and Multi-Script Database and Benchmark for Script Identificationen_US
dc.typeArticleen_US
dc.identifier.doi10.1007/s12559-023-10193-wen_US
dc.identifier.scopus2-s2.0-85168954975-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid0000-0003-3878-3867-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Artículoen_US
dc.description.numberofpages27en_US
dc.utils.revisionen_US
dc.date.coverdateAugust 2023en_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-INFen_US
dc.description.sjr1,179
dc.description.jcr5,4
dc.description.sjrqQ1
dc.description.jcrqQ1
dc.description.scieSCIE
dc.description.miaricds10,6
item.grantfulltextopen-
item.fulltextCon texto completo-
crisitem.project.principalinvestigatorFerrer Ballester, Miguel Ángel-
crisitem.author.deptGIR IDeTIC: División de Procesado Digital de Señales-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.deptDepartamento de Señales y Comunicaciones-
crisitem.author.deptGIR IDeTIC: División de Procesado Digital de Señales-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.deptDepartamento de Física-
crisitem.author.deptGIR IDeTIC: División de Procesado Digital de Señales-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.deptDepartamento de Informática y Sistemas-
crisitem.author.orcid0000-0002-2924-1225-
crisitem.author.orcid0000-0003-3878-3867-
crisitem.author.orcid0000-0002-4441-6652-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.fullNameFerrer Ballester, Miguel Ángel-
crisitem.author.fullNameDíaz Cabrera, Moisés-
crisitem.author.fullNameMorales Moreno,Aythami-
crisitem.author.fullNameCarmona Duarte, María Cristina-
Colección:Artículos
Adobe PDF (2,97 MB)
Vista resumida

Visitas

75
actualizado el 04-may-2024

Descargas

42
actualizado el 04-may-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.