Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/114835
Título: | 3D curve regularization | Autores/as: | Alvarez, Luis | Clasificación UNESCO: | 120601 Construcción de algoritmos 220990 Tratamiento digital. Imágenes |
Palabras clave: | 3D curves Euler-Lagrange equations Regularization Variational models |
Fecha de publicación: | 2022 | Publicación seriada: | Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales - Serie A: Matemáticas | Resumen: | In this paper, we study the regularization of 3D curves connecting two points. We propose an energy-based formulation which is an extension to 3D of the geodesic active contours introduced in 2D by Caselles et al. in 1997. By minimizing this energy we try to minimize the curve length but keeping the curve close to the original one. The energy depends on a regularization parameter which determines the smoothness of the regularized curve. We show the Euler-Lagrange equation of the proposed energy using the arc-length parameterization of the curve. We interpret the Euler-Lagrange equation in terms of the Frenet–Serret frame and we study some qualitative properties of the energy minima. We apply the steepest-descent method to approximate the local minima of the energy using an evolution equation. We propose a numerical scheme to solve the evolution equation and we present some experiments on real data in the context of aortic centerline regularization. | URI: | http://hdl.handle.net/10553/114835 | ISSN: | 1578-7303 | DOI: | 10.1007/s13398-022-01242-4 | Fuente: | Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales - Serie A: Matematicas [ISSN 1578-7303], v. 116 (3), 106, (Mayo 2022) |
Colección: | Artículos |
Visitas
280
actualizado el 27-jul-2024
Descargas
221
actualizado el 27-jul-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.