Please use this identifier to cite or link to this item:
Title: 3D curve regularization
Authors: Alvarez, Luis 
UNESCO Clasification: 120601 Construcción de algoritmos
220990 Tratamiento digital. Imágenes
Keywords: 3D curves
Euler-Lagrange equations
Variational models
Issue Date: 2022
Journal: Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales - Serie A: Matemáticas 
Abstract: In this paper, we study the regularization of 3D curves connecting two points. We propose an energy-based formulation which is an extension to 3D of the geodesic active contours introduced in 2D by Caselles et al. in 1997. By minimizing this energy we try to minimize the curve length but keeping the curve close to the original one. The energy depends on a regularization parameter which determines the smoothness of the regularized curve. We show the Euler-Lagrange equation of the proposed energy using the arc-length parameterization of the curve. We interpret the Euler-Lagrange equation in terms of the Frenet–Serret frame and we study some qualitative properties of the energy minima. We apply the steepest-descent method to approximate the local minima of the energy using an evolution equation. We propose a numerical scheme to solve the evolution equation and we present some experiments on real data in the context of aortic centerline regularization.
ISSN: 1578-7303
DOI: 10.1007/s13398-022-01242-4
Source: Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales - Serie A: Matematicas [ISSN 1578-7303], v. 116 (3), 106, (Mayo 2022)
Appears in Collections:Artículos
Adobe PDF (570,3 kB)
Show full item record

Google ScholarTM




Export metadata

Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.