Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/114835
Campo DC Valoridioma
dc.contributor.authorAlvarez, Luisen_US
dc.date.accessioned2022-05-23T15:10:03Z-
dc.date.available2022-05-23T15:10:03Z-
dc.date.issued2022en_US
dc.identifier.issn1578-7303en_US
dc.identifier.otherScopus-
dc.identifier.otherWoS-
dc.identifier.urihttp://hdl.handle.net/10553/114835-
dc.description.abstractIn this paper, we study the regularization of 3D curves connecting two points. We propose an energy-based formulation which is an extension to 3D of the geodesic active contours introduced in 2D by Caselles et al. in 1997. By minimizing this energy we try to minimize the curve length but keeping the curve close to the original one. The energy depends on a regularization parameter which determines the smoothness of the regularized curve. We show the Euler-Lagrange equation of the proposed energy using the arc-length parameterization of the curve. We interpret the Euler-Lagrange equation in terms of the Frenet–Serret frame and we study some qualitative properties of the energy minima. We apply the steepest-descent method to approximate the local minima of the energy using an evolution equation. We propose a numerical scheme to solve the evolution equation and we present some experiments on real data in the context of aortic centerline regularization.en_US
dc.languageengen_US
dc.relation.ispartofRevista de la Real Academia de Ciencias Exactas, Físicas y Naturales - Serie A: Matemáticasen_US
dc.sourceRevista de la Real Academia de Ciencias Exactas, Fisicas y Naturales - Serie A: Matematicas [ISSN 1578-7303], v. 116 (3), 106, (Mayo 2022)en_US
dc.subject120601 Construcción de algoritmosen_US
dc.subject220990 Tratamiento digital. Imágenesen_US
dc.subject.other3D curvesen_US
dc.subject.otherEuler-Lagrange equationsen_US
dc.subject.otherRegularizationen_US
dc.subject.otherVariational modelsen_US
dc.title3D curve regularizationen_US
dc.typeinfo:eu-repo/semantics/Articleen_US
dc.typeArticleen_US
dc.identifier.doi10.1007/s13398-022-01242-4en_US
dc.identifier.scopus85129840013-
dc.identifier.isi000792611100001-
dc.contributor.orcid0000-0002-6953-9587-
dc.contributor.authorscopusid55640159000-
dc.identifier.eissn1579-1505-
dc.identifier.issue3-
dc.relation.volume116en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Artículoen_US
dc.contributor.daisngid51185220-
dc.description.notasMathematics Subject Classification 49J40 · 35K15 · 53A04 · 65D10 · 65M06 · 68U10en_US
dc.description.numberofpages10en_US
dc.utils.revisionen_US
dc.contributor.wosstandardWOS:Alvarez, L-
dc.date.coverdateMayo 2022en_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-INFen_US
dc.description.sjr0,933-
dc.description.jcr2,9-
dc.description.sjrqQ1-
dc.description.jcrqQ1-
dc.description.sellofecytSello FECYT-
dc.description.scieSCIE-
dc.description.miaricds10,8-
item.grantfulltextopen-
item.fulltextCon texto completo-
crisitem.author.deptGIR Modelos Matemáticos-
crisitem.author.deptDepartamento de Informática y Sistemas-
crisitem.author.orcid0000-0002-6953-9587-
crisitem.author.parentorgDepartamento de Informática y Sistemas-
crisitem.author.fullNameÁlvarez León, Luis Miguel-
Colección:Artículos
Adobe PDF (570,3 kB)
Vista resumida

Visitas

280
actualizado el 27-jul-2024

Descargas

221
actualizado el 27-jul-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.