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Abstract
In this paper, we study the regularization of 3D curves connecting two points. We propose
an energy-based formulation which is an extension to 3D of the geodesic active contours
introduced in 2D by Caselles et al. in 1997. By minimizing this energy we try to minimize
the curve length but keeping the curve close to the original one. The energy depends on a
regularization parameter which determines the smoothness of the regularized curve.We show
the Euler-Lagrange equation of the proposed energy using the arc-length parameterization of
the curve. We interpret the Euler-Lagrange equation in terms of the Frenet–Serret frame and
we study some qualitative properties of the energy minima. We apply the steepest-descent
method to approximate the local minima of the energy using an evolution equation. We
propose a numerical scheme to solve the evolution equation andwe present some experiments
on real data in the context of aortic centerline regularization.
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1 Introduction

In the context of medical applications, the development of new imagemodalities andmedical
treatments is a source of interesting mathematical problems. The current available 3D scans
of the human body allow the implantation of stents in the vascular system. A critical issue
in stent implantation is the length of the stent required for the treatment. This length is
usually measured based on the length of the centerline of the artery between 2 points, but
the estimation of this centerline is usually noised which can provide an inaccurate estimation
of the length of the stent. Inspired by this practical problem we study in this paper the
regularization of 3D curves connecting 2 points. We will use an extension to 3D of the
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geodesic active contour energy formulation introduced by Caselles et al. in the seminal paper
[1].

Let C̃ : [0, 1] → R3 be a 3D curve satisfying the following boundary condition:

C̃(0) = p0 C̃(1) = p1, (1)

for some p0, p1 ∈ R3. We consider the minimization problem given by the energy:

E(C̃) ≡
∫ 1

0
g(C̃(q))‖C̃q(q)‖dq, (2)

where g : R3 → R, C̃q(q) is the tangent vector to the curve C̃ at the point C̃(q) given by the
first derivative of C̃(q) at q , and ‖.‖ is the L2 norm. In the context of 3D curve regularization,
given an original curve C̃0, we define p0 = C̃0(0), p1 = C̃0(1) and g as

g(x) = d(x, C̃0) + w, (3)

where d(x, C̃0) is the Euclidean distance of a 3D point x to C̃0 and w ≥ 0 is a regularization
parameter. Notice that for all w ≥ 0 the function g(.) is nonnegative and in the case w = 0,
the global minimum of the energy E(C̃) is attained in C̃ ≡ C̃0 (E(C̃0) = 0). However, if
w > 0, then, a regularization effect is introduced because we penalize high values of the
curve length and the minima of energy E(C̃) are expected to be a regularization of C̃0. The
larger the value of w, the stronger the regularization effect.

Equation (2) is an extension to 3D of the geodesic active contour formulation in 2D,
introduced by Caselles et al. in [1]. As shown in [1], E(C̃) corresponds to a new curve
length definition obtained by weighting the Euclidean element of length ds = ‖C̃q(q)‖dq
by g(C̃(q)). Notice that if we denote by C(s), the curve C̃(q) reparameterized using the
arc-length s, then

E(C̃) =
∫ |C̃|

0
g(C(s))ds, (4)

where | C̃ | is the curve length. In this paper, we will show that if C(s) is the arc-length
reparametrization of a local minimum of E(C̃), then C satisfies the Euler-Lagrange equation

∇g(C)− < ∇g(C), Cs > Cs − g(C)Css = 0, (5)

with C(0) = p0 and C(| C |) = p1. ∇g represents the gradient of the function g, < ., . > the
scalar product of vectors, and Cs and Css represent, respectively, the first and second derivative
of the curve C with respect to the arc-length parameter s. We will use this Euler-Lagrange
equation to approximate numerically the local minima of E(C̃) and we will present some
experiments on real data in the context of aortic centerline regularization.

The rest of the paper is organized as follows: in Sect. 2, we present some related works.
In Sect. 3, we study the Euler-Lagrange equation of the energy E(C̃) and its interpretation in
terms of the Frenet–Serret frame. In Sect. 4, we present some qualitative properties of the
minima of E(C̃). In Sect. 5, we present a numerical scheme to approximate local minima of
E(C̃) using the steepest-descent method. In Sect. 6 we present some numerical results in the
context of aortic centerline regularization using real data. Finally, in Sect. 7, we draw some
conclusions.
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2 Related work

The energy E(C̃) is an straightforward extension to 3D of the geodesic active contours
introduced by Caselles et al. in 2D [1]. The elegant energy formulation of the geodesic active
contours have been extensively used in the literature in the last years. However, in the original
geodesic active contours, the authors study a completely different problem: the detection of
object contours. In particular, the shape of the function g in the energy E(C̃) is completely
different to the one we propose in the Eq. (3). On the other hand, in the geodesic active
contours, the curves are closed and the authors do not use the boundary condition (1) to
connect two fixed points. An extension of the geodesic active contours using the boundary
condition (1) in 2D has been proposed in [2].

In [3] and [4], the authors study the problem of 3D curve smoothing using the evolution
equation:

Ct = −∇d∂A(C) + wkN , (6)

whereN is the normal and k the curvature. This is an heuristic formulation of the smoothing
process which does not take into account the correct formulation of the Euler–Lagrange
equation of energy E(C̃) that we study in this paper.

In [5] and [6], some energies for curvature penalized minimal paths are proposed to regu-
larize 2D curves. In [7], the authors propose a minimal path approach for tubular structures
segmentation in 2D images with applications to retinal vessel segmentation. In [8] , the
authors introduce a method for the automatic estimation of the aorta segmentation and the
centerline estimation.

3 Euler–Lagrange equation of E(C̃)
Theorem 1 Let us consider a family of curves C̃ : (−ε, ε) × [0, 1] → R3 where C̃(u, q) is a
C2 function and C(s) is the arc-length parameterization of C̃(0, q) then

d

du
E(C̃(u)) |u=0 =

∫ |C|

0
< ∇g(C)− < ∇g(C), Cs > Cs − g(C)Css, Cu > ds. (7)

Proof : we follow the technique showed in [1] (Appendix B) adapted to the 3D case. By
deriving E(C̃) with respect to u, we obtain:

d

du
E(C̃) =

∫ 1

0

d

du
g(C̃)‖C̃q‖dq +

∫ 1

0
g(C̃)

d

du
‖C̃q‖dq =

∫ 1

0
< ∇g(C̃), C̃u > ‖C̃q‖dq +

∫ 1

0
< g(C̃)

C̃q
‖C̃q‖

, Cuq > dq,

integrating by parts in the second term and taking into account the boundary conditions we
obtain:

d

du
E(C̃) =

∫ 1

0
< ∇g(C̃), C̃u > ‖C̃q‖dq −

∫ 1

0
<

d

dq

(
g(C̃)

C̃q
‖C̃q‖

)
, C̃u > dq =

∫ 1

0
< ∇g(C̃), C̃u > ‖C̃q‖dq −

∫ 1

0
< ∇g(C̃), C̃q ><

C̃q
‖C̃q‖

, C̃u > dq
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−
∫ 1

0
< g(C̃)

d

dq

(
C̃q

‖C̃q‖

)
, C̃u > dq,

Taking into account that

d

dq

(
C̃q

‖C̃q‖

)
= Css‖C̃q‖,

we obtain the theorem statement, that is:

d

du
E(C̃) |u=0 =

∫ |C |

0
< ∇g(C)− < ∇g(C), Cs > Cs − g(C)Css, Cu > ds.

�	
As a consequence of this theorem, we obtain that the Euler-Lagrange equation of the

energy E(C̃) is given by the Eq. (5). That is

∇g(C)− < ∇g(C), Cs > Cs − g(C)Css = 0.

Next, we are going to reformulate this equation in terms of the Frenet–Serret frame which
associates to each point of the curve, the orthonormal basis T(s),N(s), and B(s) defined as
follows (see, for instance, [9]) :

• T(s) = Cs (s)‖Cs (s)‖ is the unit vector tangent to the curve (notice that as s is the arc-length
parameterization of the curve, then ‖Cs(s)‖ ≡ 1 and T(s) = Cs(s)).

• N(s) = dT
ds (s)∥∥∥ dT
ds (s)

∥∥∥ is the normal unit vector. (κ(s) =
∥∥∥ dT
ds (s)

∥∥∥ is the curvature which,

intuitively, measures how far is the curve to be a straight line.
• B(s) = T(s) × N(s) is the binormal unit vector (the cross product of T(s) and N(s)).

In the case that ‖Css(s)‖ 
= 0,we have that the Frenet–Serret frame is well-defined, Css(s) =
κ(s)N(s) and then, using that

∇g(C) =< ∇g(C), Cs > Cs + < ∇g(C),N > N+ < ∇g(C),B > B,

we can express the Euler–Lagrange equation in terms of the Frenet–Serret frame as:

<∇g(C(s)),N(s)>N(s) + <∇g(C(s)),B(s)>B(s) − g(C(s))κ(s)N(s) = 0 (8)

4 Some qualitative properties of theminima of E(C̃)
First we show that if the energy E(C̃) decreases with respect to the energy for the original
curve, then the length of the curve also decreases.

Proposition 2 If g(x) = d(x, C̃0) + w, w > 0 and E(C̃) ≤ E(C̃0) then | C̃ |≤| C̃0 |.
Proof This result is a straightforward consequence of the following inequality:

w | C̃ |≤ E(C̃) ≤ E(C̃0) = w | C̃0 | .

�	
Next, we study the asymptotic state of the minima of E(C̃) when w → ∞.
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Proposition 3 Let C̃(q)=p0(1−q)+ p1q be the curve corresponding to the straight segment
joining p0 and p1. Let {C̃w}w>0 a collection of curves satisfying that E(C̃w) ≤ E(C̃) for
g(x) = d(x, C̃0) + w. Then

Limw→∞ | C̃w |= ‖p1 − p0‖. (9)

In particular, when w → ∞, C̃w approximates the segment joining p0 and p1.

Proof First, we notice that as C̃w(0) = p0 and C̃w(1) = p1 then | C̃w |≥ ‖p1 − p0‖. On the
other hand:

w | C̃w |≤ E(C̃w) ≤ E(C̃) =
∫ 1

0
d(C̃(q), C̃0) ‖p1 − p0‖ dq + w ‖p1 − p0‖ ,

therefore

0 ≤| C̃w | − ‖p1 − p0‖ ≤
∫ 1
0 d(C̃(q), C̃0) ‖p1 − p0‖ dq

w
,

and then

Limw→∞ | C̃w |= ‖p1 − p0‖ .

�	

5 Approximation of the local minima of E(C̃) by the steepest-descent
method

According to the result of theorem 1 and the steepest-descent method, to connect an initial
curve C0 with a local minimum of the energy E(C̃) we solve the evolution equation:

Ct (t,s)=g(C(t,s))Css(t,s) − (∇g(C(t,s))− <∇g(C(t,s)), Cs(t,s)> Cs(t,s)), (10)

the asymptotic state of this evolution equation when t → ∞ corresponds to a local minima
of E(C̃). Notice that the vector ∇g(C(s))− < ∇g(C(s)), Cs(s) > Cs(s) is the projection
of the vector ∇g(C(s)) in the plane orthogonal to Cs(s). Moreover, if ‖Css(s)‖ 
= 0, then
Css(s) = κ(s)N(s) which is also orthogonal to Cs(s), therefore the evolution equation makes
always move the curve C in the orthogonal plane to the tangent vector Cs .

In the curve evolution Eq. (10) we use as initial value C(0, s) = C0(s) and the boundary
condition C(t, 0) = p0 and C(t, | C(t) |) = p1. Therefore we look for a local minima of E(C̃)

close to te original curve C0. Notice that we always initialize C(0, s) as the original curve and
we do not have to deal with the problem of the curve initializationwhich appears, for instance,
in object segmentation using active contours. We also emphasize that the energy E(C̃) can
have, in general, several local minima and that global minima could be quite different to the
one we obtain looking for the local minima closer to the original curve C0. The complexity of
the structure of the local minima of E(C̃) strongly depends on the complexity of the geometry
of the initial curve C0. For instance, if C0 is an straight segment joining p0 and p1, then, C0
is the global minima of E(C̃). However, for a general curve, the situation can be much more
complex. Assume, for instance, that w is small, p0 and p1 are very close but | C0 | is much
larger than ‖p1 − p0‖, then we can expect that the global minima is close to the segment
joining p0 and p1 and that this global minima is different of the local minima closer to C0.
In any case, the fact that we use always the original curve as initialization of the steepest
descent method strongly reduces the possibility to get trapped in spurious local minima.
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We use a basic explicit finite difference scheme to approximate numerically the solution
of the evolution Eq. (10) with the initial value C(0, s) = C0(s) and the boundary condition
C(t, 0) = p0 and C(t, | C(t) |) = p1. Numerically, a 3D curve C is given by an ordered
collection of 3D points {Ci }i=1,..,χ(C), where χ(C) represents the number of points of the
curve. By the boundary condition we always have that C1 = p0 and Cχ(C) = p1. Notice
that in the evolution Eq. (10) the curves are parametrized using the arc-length, therefore we
assume that ∥∥∥Ci − Ci−1

∥∥∥ = h for all i = 2, .., χ(C) − 1,∥∥∥Cχ(C) − Cχ(C)−1
∥∥∥ ≤ h, (11)

which means that we use a curve parameterization with a constant arc-length h > 0. In what
follows, we assume, without loss of generality (by scaling the size of Ci ) that h = 1. Given a
discretization step dt , we denote by Cn,k an approximation of C(n · dt, k). We compute Cn,k

using the following explicit finite difference scheme:

Cn+1,k − Cn,k

dt
= g(Cn,k)Cn,k

ss − (∇g(Cn,k)− < ∇g(Cn,k), Cn,k
s > Cn,k

s ), (12)

for k = 2, .., χ(C) − 1 and n = 0, 1, ... Cn,k
s and Cn,k

ss are approximations of Cs(n · dt, k)
and Css(n · dt, k) computed as:

Cn,k
s = Cn,k − Cn,k−1

Cn,k
ss = Cn,k+1 − 2Cn,k + Cn,k−1,

We use some algorithms proposed in [4] to deal with two technical issues related with this
scheme: the first one is that we need to compute g(Cn,k) = d(Cn,k, C0) + w and ∇g(Cn,k),
which requires the computation of the 3D distance to a curve. The second one is that
after each iteration we have to reparametrize the discrete curve to preserve the condition∥∥Cn,k − Cn,k−1

∥∥ = 1 for all n and k = 2, .., χ(C) − 1. In both cases we use algorithms
proposed in [4] to deal with these issues.

We use as stopping criterion of the iterative scheme (12) the condition

| E(Cn) − E(Cn−1) |
E(Cn) < T OL, (13)

T OL > 0 and dt are the parameters of the iterative scheme. In the numerical experiments
we present in the next section we use T OL = 10−8 and dt = 10−4.

6 Numerical experiments

Wewill present some experiments in the context of centerline regularization of blood vessels
extracted from a 3DComputed tomography (CT) scan. There are different types of algorithms
to extract the centerline of blood vessels (see, for instance, [8, 10]). These algorithms segment
the vessel lumen and the vessel centerline is obtained from this segmentation using, for
example, the centers of the maximal spheres included in the vessel lumen. The method that
we propose can be used to regularize the centerline extracted by any existing method in the
literature. It can be considered a post-processing of the obtained centerline. In our knowledge
this approach is newanduntil now the problemof regularizing the 3Dcurves obtained by these
centerlines had not been studied. Centerline regularization is necessary because normally its

123



3D curve regularization Page 7 of 10   106 

Fig. 1 From left to right we show, for w = 10, 25, 50, 100, the initial curve C0 (in black) and the curve C∞
(in green), which corresponds to the asymptotic state of the iterative scheme (12)

Fig. 2 Zoom of some parts of the curves in the Fig. 1 for w = 10 (at the top) and w = 25 (at the bottom)

estimation may include irregularities caused by poor CT quality, or because the patient’s
pathologies, such as aneurysms or thrombi, distort the geometry of the vessel lumen and
therefore negatively affect the centerline estimation. Correct estimation of the centerline is
very important in applications such as stent implantation. Since the stent is a regular and
elastic object, the correct estimation of the length of the stent requires an estimation of the
centerline through a regular curve.

In our experiments, we use, as the original curve C0, the centerline of an aortic lumen
computed from a real CT scan using the technique introduced in [8]. The main goal of these
experiments is to explore the evolution of the energy, E(Cn), and the length, |Cn |, of the
curve under the action of the iterative scheme (12), and the influence of w in the results. We
denote by C∞ the final estimate of the iterative scheme (12) at the stopping time t∞ = n · dt
obtained using (13).

In Fig. 1, we compare the curves C0 and C∞ for different values of w. As expected, we
observe that the larger the value of w, the stronger is the regularization of the curve. For
w = 10 and w = 25 we can not appreciate visually in Fig. 1 any difference between the
curvesC0 andC∞. To visualize such differenceswe show inFig. 2 some images corresponding
to zoom of the curves around some particular points. We can clearly appreciate in this figure
the regularization effect of the minimization of the energy E(C).
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Fig. 3 We show, for w = 10, 25, 50, 100, the evolution of the energy E(Cn) and the length of the curve Cn ,
solution of the iterative scheme (12), using dual axis charts (on the left the energy and on the right the length).
In the horizontal axis we show the value of t = n · dt

In Fig. 3 we show, for different values of w, the evolution of the energy E(Cn) and the
length of the curve Cn , solution of the iterative scheme (12). We observe a nice convergence
behavior of the iterative scheme: the energy and the length of the curve decrease sharply at
the beginning, then the energy stabilizes and finally the stopping time t∞ is reached using
criterion (13).

In Table 1, we show, for different values of w, the initial and final values of the energy,
the length of the curve (in millimeters) and the stopping time t∞ of the iterative scheme. We
observe a significant reduction of the value of the energy E(C). The reduction of the length
of the curve and the stopping time strongly depend on the value of w.

An important practical issue in the applications is the choice of the regularization parameter
w. To illustrate the influence of the parameter w in the curve regularization process we have
used, in the experiments, high values of w and we have observed that the result obtained
is the expected one taking into account the mathematical formulation of the model. In real
applications, such as the regularization of blood vessels, the value of w that would be taken
is, usually small, beloww = 10, since what is required, in general, is to obtain a regular curve
but close to the original one. In any case, w is a parameter of the algorithm that will have to
be adjusted according to the noise level of the original centerline. As explained above, the
noise that the centerline presents can depend on the quality of the CT scan, the pathologies
that the patient presents or the particular algorithm used to estimate the centerline.

123



3D curve regularization Page 9 of 10   106 

Table 1 We show, for different
values of w, the initial and final
values of the energy, the length of
the curve (in millimeters) and the
stopping time t∞ of the iterative
scheme

w = 10 w = 25 w = 50 w = 100

E(C0) 5150 12900 25818 51653

E(C∞) 4969 12312 23962 32236

|C0 | 517 mm 517 mm 517 mm 517 mm

|C∞ | 496 mm 487 mm 454 mm 266 mm

t∞ 0.061 0.428 1.944 37.80

7 Conclusion

3D curve regularization is an interesting mathematical problem which appears in a natural
way in medical applications. To deal with this problem, we extend to 3D the elegant energy
formulation of the geodesic active contours introduced by Caselles et al. in [1]. We show
the Euler-Lagrange equation of the energy, some qualitative properties of the minima and
we use the steepest-descent method to design an iterative numerical scheme to approximate
local minima of the energy based on the associated evolution equation. We present some
experiments on real data which show that the proposed iterative scheme works quite well.
The energy value decreases sharply across iterations until the convergence of the algorithm.
We also found that, as expected, the regularization parameter w determines the regularity
and length of the final curve obtained as the asymptotic state of the iterative scheme. The
larger the value of w, the smoother the regularized curve and the shorter its length.

Supplementary information
We provide an ASCII text file with the point coordinates of the 3D curve used in the experi-
ments corresponding to the aortic centerline extracted from a CT scan.
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