Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/114635
Título: | A survey of visual and procedural handwriting analysis for neuropsychological assessment | Autores/as: | Moetesum, Momina Díaz Cabrera, Moisés Masroor, Uzma Siddiqi, Imran Vessio, Gennaro |
Clasificación UNESCO: | 2490 Neurociencias 120304 Inteligencia artificial 61 Psicología |
Palabras clave: | Artificial Intelligence Classification Computer Aided Diagnosis Neuropsychology Visual And Procedural Handwriting Analysis |
Fecha de publicación: | 2022 | Proyectos: | Higher Education Commission (HEC), Pakistan, under grant number 8910/Federal/NRPU/R&D/HEC/2017 Modelado cinemático 3D para la caracterización del movimiento humano, animal y robótico |
Publicación seriada: | Neural Computing and Applications | Resumen: | To date, Artificial Intelligence systems for handwriting and drawing analysis have primarily targeted domains such as writer identification and sketch recognition. Conversely, the automatic characterization of graphomotor patterns as biomarkers of brain health is a relatively less explored research area. Despite its importance, the work done in this direction is limited and sporadic. This paper aims to provide a survey of related work to provide guidance to novice researchers and highlight relevant study contributions. The literature has been grouped into “visual analysis techniques” and “procedural analysis techniques”. Visual analysis techniques evaluate offline samples of a graphomotor response after completion. On the other hand, procedural analysis techniques focus on the dynamic processes involved in producing a graphomotor reaction. Since the primary goal of both families of strategies is to represent domain knowledge effectively, the paper also outlines the commonly employed handwriting representation and estimation methods presented in the literature and discusses their strengths and weaknesses. It also highlights the limitations of existing processes and the challenges commonly faced when designing such systems. High-level directions for further research conclude the paper. | URI: | http://hdl.handle.net/10553/114635 | ISSN: | 0941-0643 | DOI: | 10.1007/s00521-022-07185-6 | Fuente: | Neural Computing and Applications [ISSN 0941-0643], n. 34, p. 9561–9578 |
Colección: | Artículos |
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.