Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/114635
Título: A survey of visual and procedural handwriting analysis for neuropsychological assessment
Autores/as: Moetesum, Momina
Díaz Cabrera, Moisés 
Masroor, Uzma
Siddiqi, Imran
Vessio, Gennaro
Clasificación UNESCO: 2490 Neurociencias
120304 Inteligencia artificial
61 Psicología
Palabras clave: Artificial Intelligence
Classification
Computer Aided Diagnosis
Neuropsychology
Visual And Procedural Handwriting Analysis
Fecha de publicación: 2022
Proyectos: Higher Education Commission (HEC), Pakistan, under grant number 8910/Federal/NRPU/R&D/HEC/2017
Modelado cinemático 3D para la caracterización del movimiento humano, animal y robótico 
Publicación seriada: Neural Computing and Applications 
Resumen: To date, Artificial Intelligence systems for handwriting and drawing analysis have primarily targeted domains such as writer identification and sketch recognition. Conversely, the automatic characterization of graphomotor patterns as biomarkers of brain health is a relatively less explored research area. Despite its importance, the work done in this direction is limited and sporadic. This paper aims to provide a survey of related work to provide guidance to novice researchers and highlight relevant study contributions. The literature has been grouped into “visual analysis techniques” and “procedural analysis techniques”. Visual analysis techniques evaluate offline samples of a graphomotor response after completion. On the other hand, procedural analysis techniques focus on the dynamic processes involved in producing a graphomotor reaction. Since the primary goal of both families of strategies is to represent domain knowledge effectively, the paper also outlines the commonly employed handwriting representation and estimation methods presented in the literature and discusses their strengths and weaknesses. It also highlights the limitations of existing processes and the challenges commonly faced when designing such systems. High-level directions for further research conclude the paper.
URI: http://hdl.handle.net/10553/114635
ISSN: 0941-0643
DOI: 10.1007/s00521-022-07185-6
Fuente: Neural Computing and Applications [ISSN 0941-0643], n. 34, p. 9561–9578
Colección:Artículos
Adobe PDF (707,01 kB)
Vista completa

Citas SCOPUSTM   

14
actualizado el 22-dic-2024

Citas de WEB OF SCIENCETM
Citations

12
actualizado el 22-dic-2024

Visitas

83
actualizado el 11-may-2024

Descargas

134
actualizado el 11-may-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.