Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/132578
Título: FPGA-Based Hyperspectral Lossy Compressor With Adaptive Distortion Feature for Unexpected Scenarios
Autores/as: Caba, Julian
Stroobandt, Dirk
Diaz, Maria
Barba, Jesus
Rincon, Fernando
Lopez, Sebastián 
Garijo López,Juan Carlos 
Clasificación UNESCO: 33 Ciencias tecnológicas
Palabras clave: Adaptive computing
field-programmable gate array (FPGA)
hyperspectral imaging
lossy compression
on-board processing
Fecha de publicación: 2023
Publicación seriada: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 
Resumen: Lossy compression solutions have grown up during the past decades because of the increment of the data rate in the new-generation hyperspectral sensors; however, linear compression techniques include useless information on regions of little interest for the final application and, at the same time, scarce information on areas of interest. In this article, a transform-based lossy compressor, HyperLCA, has been extended to include a runtime adaptive distortion feature that brings multiple compression ratios in the same scenario. The solution has been designed to keep the same hardware-friendly feature, just as its previous version, specifically conceived to ease the deployment of the solution on reconfigurable hardware devices (FPGAs). The experiments demonstrate that the new version of the compressor is able to process 1024 × 1024 hyperspectral images and 180 spectral bands (377.5 MB) in 0.935 s with a power consumption of 1.145 W. In addition, experimental results also reveal that our architecture features high throughput (MSamples/s) and remarkable energy-efficiency (MB/s/W) tradeoffs, 10× and 6× greater than the best state-of-the-art solution, respectively.
URI: http://hdl.handle.net/10553/132578
ISSN: 1939-1404
DOI: 10.1109/JSTARS.2023.3298484
Colección:Artículos
Adobe PDF (4,09 MB)
Vista completa

Citas SCOPUSTM   

1
actualizado el 15-dic-2024

Visitas

31
actualizado el 07-dic-2024

Descargas

18
actualizado el 07-dic-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.