
7024 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 16, 2023

FPGA-Based Hyperspectral Lossy Compressor With
Adaptive Distortion Feature for

Unexpected Scenarios
Julián Caba , Dirk Stroobandt , Member, IEEE, María Díaz , Jesús Barba , Fernando Rincón , Member, IEEE,

Sebastián López , Member, IEEE, and Juan Carlos López , Member, IEEE

Abstract—Lossy compression solutions have grown up during
the past decades because of the increment of the data rate in the
new-generation hyperspectral sensors; however, linear compres-
sion techniques include useless information on regions of little
interest for the final application and, at the same time, scarce
information on areas of interest. In this article, a transform-based
lossy compressor, HyperLCA, has been extended to include a run-
time adaptive distortion feature that brings multiple compression
ratios in the same scenario. The solution has been designed to
keep the same hardware-friendly feature, just as its previous ver-
sion, specifically conceived to ease the deployment of the solution
on reconfigurable hardware devices (FPGAs). The experiments
demonstrate that the new version of the compressor is able to
process 1024 × 1024 hyperspectral images and 180 spectral bands
(377.5 MB) in 0.935 s with a power consumption of 1.145 W. In
addition, experimental results also reveal that our architecture
features high throughput (MSamples/s) and remarkable energy-
efficiency (MB/s/W) tradeoffs, 10× and 6× greater than the best
state-of-the-art solution, respectively.

Index Terms—Adaptive computing, field-programmable gate
array (FPGA), hyperspectral imaging, lossy compression, on-board
processing.

I. INTRODUCTION

THE information collected by hyperspectral sensors in the
electromagnetic spectrum provides richness of spectral

information, especially if they are high resolution and multi-
channel, to be processed by applications related to the Earth’s
observation. This fact makes hyperspectral technology a lead-
ing candidate for the analysis of land areas and, hence, has

Manuscript received 6 January 2023; revised 27 March 2023, 20 April 2023,
30 May 2023, and 15 July 2023; accepted 18 July 2023. Date of publication 24
July 2023; date of current version 3 August 2023. This work was supported in
part by H2020 European Union Program under Grant 857159 (SHAPES Project)
and in part by the Ministry of Economy and Competitiveness of the Spanish
Government under TALENT Project PID2020-116417RB-C4 (subprojects 1
and 4) and MIRATAR Project TED2021-132149B-C41. (Corresponding author:
Julián Caba.)

Julián Caba, Jesús Barba, Fernando Rincón, and Juan Carlos López are with
the School of Computer Science, University of Castilla-La Mancha, 13071
Ciudad Real, Spain (e-mail: julian.caba@uclm.es; jesus.barba@uclm.es; Fer-
nando.Rincon@uclm.es; juancarlos.lopez@uclm.es).

Dirk Stroobandt is with the Ghent University, 9000 Ghent, Belgium (e-mail:
dirk.stroobandt@ugent.be).

María Díaz and Sebastián López are with the Institute of Applied Mi-
croelectronics (IUMA), 35017 Las Palmas de Gran Canaria, Spain (e-mail:
mdmartin@iuma.ulpgc.es; seblopez@iuma.ulpgc.es).

Digital Object Identifier 10.1109/JSTARS.2023.3298484

acquired an important relevance, being widely used for a variety
of remote sensing applications, such as precision agriculture,
geological mapping, or mineral exploration. Nevertheless, the
large amount of data collected by these sensors requires huge
on-board storage resources or high-bandwidth communications,
but both are limited. On top of that, the technological ad-
vances promote to market sensors with higher spectral and
spatial resolutions that make on-board data processing more
challenging [1], [2].

Traditionally, the pieces of information captured by hyper-
spectral sensors are not processed onboard due to the low com-
puting performance and the limited on-board power capacity.
Thus, low-power and cost-optimized devices are selected to
process the data sensed, but these devices do not feature a high
performance [3]. In this regard, images are downloaded to the
Earth’s surface to be processed ofline by high-performance com-
puting systems. In aerial capturing platforms, such as unmanned
aerial vehicles (UAVs), images are usually stored onboard and
processed when the flight mission is completed [4]. Recently,
some efforts have been made to transmit the images to the ground
as soon as they are captured, but it requires a point-to-point con-
nection with high bandwidth in order to reduce large delays [5].
Consequently, the transfer of large volumes of data reveals a
bottleneck in the downlink systems that can affect the overall
performance, as well as the budget of energy consumed by the
transmission [6].

Recent studies propose edge computing solutions that al-
low to process the sensed images onboard by reducing the
amount of downlink bandwidth. Most hyperspectral imaging
applications require the processing of huge data using complex
algorithms with a formidable computational burden [7], whose
solution is only feasible by the use of massive-parallel pro-
cessing architectures, such as graphics processing units (GPUs)
and field-programmable gate arrays (FPGAs), due to the per-
formance they can achieve and the accuracy of the results
obtained, even when fixed-point operations are used [2], [8],
[9]. However, hyperspectral imaging applications are compu-
tationally intensive, included artificial intelligence (AI) mod-
els, since they require a high number of operations/s [10].
Unfortunately, most studies introduce high-performance de-
vices to deploy FPGA or GPU-based solutions [11], [12], [13]
that is generally not acceptable in mobile-embedded systems,

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see
https://creativecommons.org/licenses/by-nc-nd/4.0/

https://orcid.org/0000-0002-7641-4643
https://orcid.org/0000-0002-4477-5313
https://orcid.org/0000-0003-2670-8149
https://orcid.org/0000-0003-1931-3245
https://orcid.org/0000-0003-4688-8650
https://orcid.org/0000-0002-2360-6721
https://orcid.org/0000-0002-7372-1568
mailto:julian.caba@uclm.es
mailto:jesus.barba@uclm.es
mailto:Fernando.Rincon@uclm.es
mailto:Fernando.Rincon@uclm.es
mailto:juancarlos.lopez@uclm.es
mailto:dirk.stroobandt@ugent.be
mailto:mdmartin@iuma.ulpgc.es
mailto:seblopez@iuma.ulpgc.es

CABA et al.: FPGA-BASED HYPERSPECTRAL LOSSY COMPRESSOR WITH ADAPTIVE DISTORTION FEATURE 7025

such as UAVs, owing to the power consumption constraints
due to the difficulty of heat dissipation and the low-power
budget.

In this sense, the use of AI models with a particular focus
on deep neural networks allows the deployment of value-added
applications, which utilize a tiny fraction of the downlink
bandwidth that would be, otherwise, required [14]. Existing
FPGA-based AI accelerators mostly tend to increase array
scale to improve throughput performance by using large FPGA
devices [13], [15], but few works optimize the hardware resource
utilization. The widespread adoption of AI opens up the building
of commercial off-the-shelf (COTS) hardware accelerators for
these algorithms, such as myriad X visual processing unit [16]
and coral tensor processing unit [17], which feature high energy
efficiency and remarkable performance, cost, and mass trade-
offs [18]. Furthermore, the open-source community facilitates
the speed up of the deployment of the model, reducing the
development time and costs with an acceptable level of relia-
bility. Although COTS hardware accelerators are a technology
that has burst onto the embedded systems, concretely in edge
computing domain, the aforementioned tradeoffs obtained by
these devices are still slightly worse than ones provided by
an efficient massive-parallel processing architecture based on
FPGA technology, as COTS hardware accelerators are general
purpose devices rather than domain specific [19].

Since the bandwidth is limited, as well as the in-circuit mem-
ory and dedicated hardware resources, such as digital signal
processing (DSP) units, available on devices to implement a
cost- and energy-optimized solution, the way to address this
challenge is to use on-board hyperspectral image compression
techniques. Although there are a large variety of compression
algorithms in the literature, lossless compression algorithms
are preferred because they preserve most hyperspectral infor-
mation [2]. Lossless techniques produce undistorted data after
the decompression process, but the compression ratio is not
large enough; however, near-lossless methods allow obtaining
larger values of compression ratio, introducing distortions that
can be controlled in accordance with the compression ratio,
but it can still be too small. Nevertheless, the latest-generation
sensors increase the data rate, requiring a higher compression
ratio and real-time compression to avoid the accumulation of
uncompressed data and, therefore, efficient transmission [20].
Although most state-of-the-art lossless compressors achieve a
quite rate–distortion performance, they provide very moderate
compression ratios roughly 2∼3:1 [21], which are not enough to
process the amount of data produced by the newest-generation
sensors. Therefore, limited communication bandwidths and in-
creasing data volumes force to move from (near-)lossless com-
pression techniques to lossy compression techniques, where a
major research effort has been carried out in recent years [2],
[22].

In mobile-embedded systems’ scenarios, parallel processing
devices, such as cost-optimized FPGAs, are suitable to imple-
ment hyperspectral image compression algorithms because of
the balance between the degree of parallelism and the cost
energy plus the cost savings of an FPGA-based solution with few
resources. Unfortunately, the limited computational resources

of these devices pose a new challenge when a solution is
based on such technologies, so low-complexity compression
schemes stand as the most practical solution for such restricted
scenarios [23], [24]. Nevertheless, most state-of-the-art lossy
compressors are based on the existing two-dimensional im-
ages or video compression algorithms, which are considered
high computational burden, intensive memory requirements,
and nonparallel nature [25]. This fact causes its use to be limited
in resource-constrained environments, such as on-board com-
pression [26]. In this context, the lossy compression algorithm
for hyperspectral image systems (HyperLCA) [27] has been
developed as a hardware-friendly lossy compressor for hyper-
spectral images, which provides good compression ratios with
a reasonable computational burden, because the compression
process is based on the transform operations. Briefly, this process
maps the spatial domain of an image into its transformation
domain to obtain the coefficients with lager amplitude, i.e.,
the features more representative of an image, which are then
encoded. In addition, this algorithm has been designed to meet
the constraints imposed by push broom/whisk broom scanners,
considering each block independently, which results in less use
of hardware resources. Its suitability for real-time performance
applications has been previously analyzed in [28].

Nevertheless, HyperLCA and state-of-the-art lossy compres-
sors behave linearly in compression ratio and quality perfor-
mance terms, i.e., the hyperspectral data are compressed in
accordance with a criterion that is defined at the beginning of
the process and it does not change until it is completed. Such
a criterion defines the compressed image quality as well as
the computational resources used in the compression process.
Concretely, signal-to-noise ratio (SNR), root-mean-square error
(RMSE), and maximum absolute difference (MAD) are conven-
tional metrics applied to lossy image compression to describe the
efficiency of compression and data quality for further use [29].

In this article, the HyperLCA algorithm has been extended
in order to include adaptive distortion feature without adding
an overhead from the original implementation, making it a
smart compressor by selecting the relevant blocks close to a
predefined signature pattern. Therefore, the algorithm has been
adapted to run more flexibly with different compression ratios
without modifying the set of core operations performed in its
original version. Furthermore, an analysis of the FPGA-based
HyperLCA with adaptive distortion feature has been carried out
by setting different rules of the distortion applied on the same
scenario, resulting in multiplicity of compression ratios within
the same image and wide range of quality compression perfor-
mance. It means multiplicity rate–distortion relations take place
in the compressed image, which contains high- and low-rate
distortions, so not only the most different hyperspectral pixels
are perfectly preserved; that is, these pixels are within the ex-
tracted information along with extra relevant pixels of interesting
blocks, which results in negligible losses since some compressed
blocks have less distortion. This fact benefits many hyperspectral
imaging applications in which the spectral resolution is decisive;
the blocks containing a large number of similarities can be
compressed with a different criterion than blocks with lower
similarities to the pattern. The relevant blocks are selected at

7026 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 16, 2023

runtime by comparing pixel-by-pixel with a signature pattern
looking for similarities in each of the spectrum bands. Finally,
the architecture has been compared with the previous version
implemented in [8] and other state-of-the-art compressors in
terms of throughput and hardware resource utilization. Against
this backdrop, the major motivation of this work is to demon-
strate the aforementioned claims about the HyperLCA with
quality control, and therefore, the aim is to contribute to the
scientific community with an intelligent lossy compressor for
hyperspectral imaging, which enriches those blocks of great-
est interest in an unexpected/unknown scenario, by using a
cost-optimized and energy-efficient solution based on FPGA
technology.

The rest of this article is organized as follows. Section II
explains in detail the proposed quality control version of the
HyperLCA compressor and highlights the differences from
its original version. Section III includes a comprehensive
description of the FPGA-based architecture for the execu-
tion of the compressor. The results of the proposed hyper-
spectral compressor implemented on a ZC7Z020 FPGA de-
vice have been evaluated in Section IV. Section V discusses
about the performance and hardware resources utilization of
the proposed architecture. Finally, Section VI concludes this
article.

II. HYPERLCA ALGORITHM

The HyperLCA algorithm is a lossy transform-based com-
pressor for hyperspectral imaging, whose original version has
been modified into a hardware-friendly version. Thus, the al-
gorithm has been redesigned to achieve high compression rate–
distortion ratios, as well as the computational burden has been
decreased due to the high level of parallelism implemented for
applications based on push broom/whisk broom sensors [9]. All
of the changes made allow for the use of parallel processing
architectures, such as FPGAs or GPUs, on which the algorithm
has been implemented, [8] and [28], respectively. Moreover, the
HyperLCA algorithm has been specially designed to work inside
specific numeric ranges and use integer arithmetic, specifying
the precision needed for the operations to be suitable in parallel
computing architectures as previously discussed in [8], [9], and
[28].

The transform-based proposed solution can independently
process blocks of the image regardless of the spatial alignment
of them, which facilitates the parallelization of the compression
process. It means that a hyperspectral pixel can be processed
independently of the subsequent pixel. On this basis, this article
proposes to analyze each pixel at runtime to determine the rate of
distortion that should be applied to the block being processed,
rather than setting a desired minimum compression ratio for
all blocks captured by the sensor, as previous versions of the
algorithm performed. Fig. 1 shows an overview of the new
version of the algorithm that represents the three main computing
stages involved in the HyperLCA compressor with adaptive
distortion feature, composed of a preprocessing or block analysis
stage, a spectral transform stage, and an entropy coding stage.

Fig. 1. Overview of the HyperLCA compressor with adaptive distortion.

A. Stage 1: Preprocessing or Block Analysis

First, the hyperspectral image is broken into blocks composed
ofBS consecutive horizontal pixels (Mk), also known as lines or
blocks, that will be processed. Then, thepmax most representative
pixels within a block (Mk) are calculated; it is feasible because
the HyperLCA compressor follows the unmixing-like strategy.
The previous implementations of the HyperLCA algorithm ini-
tialize the pmax parameter from three input parameters: CR
(minimum desired compression ratio), Nbits (number of bits),
and BS (block size) to determine the number of transformations
performed on the hyperspectral block. However, in this work, the
pmax is not fixed at design time, and it is recalculated for each
block regarding to the number of similar pixels with a hyper-
spectral pattern signature. The balance among SNR, RMSE, and
MAD quality metrics has been previously evaluated in earlier
publications by combining different configurations of the input
parameters (CR, Nbits, and BS) [28]. In particular, one of the
best configurations is set the Nbits and BS parameters to 12 and
1024, respectively. These values are kept to calculate the pmax at
runtime, while the CR depends on the number of hyperspectral
pixels close to the pattern signature.

Therefore, the HyperLCA compressor determines the number
of transformations performed on the block being processing,
Mk, as shown in (1), where DR refers to the number of bits per
pixel per band; nb represents the number of bands; BS is the
number of consecutive horizontal pixels in a single block; CR
refers to the desired compression ratio, defined as the relation be-
tween the number of bits in the original image and the ones of the
compressed data; and Nbits is the number of bits that determines
the precision and dynamic range to be used for representing
the values of the compressed data. Thus, the number of trans-
formations performed pmax directly determines the maximum
compression ratio to be reached with the selected configuration
in which higher pmax values result in better reconstructed images,
but lower compression ratios

pmax ≤ DR · nb · (BS − CR)
CR · (DR · nb+Nbits ·BS)

. (1)

The compression ratio (CR) used in the calculation of pmax for
a block must be determined by analyzing each of the pixels of
that block (Mk), comparing them one-by-one with a reference
hyperspectral signature (reference pattern). This process can
be done by using the Euclidean distance with the reference

CABA et al.: FPGA-BASED HYPERSPECTRAL LOSSY COMPRESSOR WITH ADAPTIVE DISTORTION FEATURE 7027

Fig. 2. Overview of pixel selection process by limits.

signature and the hyperspectral pixels within a block to deter-
mine if the block, which is being processed, contains a high
percentage of pixels close to the reference or, on the contrary,
contains few matches. However, Euclidean distance calculation
is costly in reconfigurable devices and makes it necessary to look
for alternatives. In this sense, this work proposes a hardware-
friendly solution by the use of band-limit values, where a delta
value is defined to set the upper and lower limits that draw the
same plot that of the reference signature. The results of this
method are similar to the ones obtained by the Euclidean distance
method.

Fig. 2 shows graphically the band-limit adopted approach,
where three hyperspectral pixels and a reference signature (black
line) are plotted. In addition, the red dotted lines define the upper
and lower limits whose trend is identical to that drawn by the
reference signature. Therefore, hyperspectral signatures within
both limits are considered close to the reference (green line of
Fig. 2), as well as those pixels whose a few number of reflectance
values are outside the limits (blue line of Fig. 2); the number of
values outside the limits is configurable. This fact means that
the hyperspectral signatures whose reflectance is very similar
to the reference, except in a small number of bands, are also
considered to be close to the reference signature. Meanwhile, the
hyperspectral pixels whose most reflectance values are outside
the limits are not considered (orange line of Fig. 2).

Once all hyperspectral pixels within a block are defined as
in or out the limits, the CR is set by analyzing the number
of pixels inside the boundaries. Fig. 3 shows three examples
with different compression ratios over the same scenario. First,
Fig. 3(a) shows an original RGB figure of a vineyard scenario,
while Fig. 3(e) shows a pattern in which white and black colors
represent the green vegetable signatures and other materials,
respectively. Unfortunately, the sensor used in this work captures
the hyperspectral information line-by-line; it means the whole
hyperspectral information of a scenario is not obtained immedi-
ately, so the operations must be performed over a line (Mk) with
BS hyperspectral pixels. Thus, when a low distortion is required
but only in the blocks which contain useful information for the
final application, the number of hyperspectral pixels close to the
reference must be small. In this sense, Fig. 3(b)–(d) highlight in
green the blocks whose CR is low, i.e., these lines contain useful
information for the final application, while the blocks whose
hyperspectral information is not too relevant are highlighted
in black. Meanwhile, Fig. 3(f)–(h) highlight the loss, hit, and

Algorithm 1: HyperLCA Transform.
Inputs:
Mk = [r1, r2, . . ., rBS], pmax

Outputs:
µ̂; E = [e1, e2, . . ., epmax]; V = [v1,v2, . . .,vpmax]
Algorithm:

1: Average pixel: µ̂;
2: Centralized image: C = Mk − µ̂ = [c1, c2, . . .cBS];
3: for n = 1 to pmax do
4: for j = 1 to BS do
5: Brightness calculation: bj = c′j · cj ;
6: end for
7: Maximum brightness: jmax = argmax(bj);
8: Extracted pixels: en = rjmax ;
9: qn = cjmax ;

10: un = qn/bjmax ;
11: Projection vector: vn = u′

n ·C;
12: Information subtraction: C = C− qn · vn;
13: end for

excess of hyperspectral information with respect to the ideal
information extraction [see Fig. 3(e)] in white, green, and red,
respectively. The process to select relevant blocks in the different
scenarios fulfills the following criteria: at least ten pixels close
to the reference for the scenario represented in Fig. 3(b), at least
300 pixels close in the case of Fig. 3(c), and at least 800 pixels
in the last case [see Fig. 3(d)].

B. Stage 2: Spectral Transform

The HyperLCA compressor is among the transform-based
algorithms that employ a modified version of the well-known
Gram–Schmidt orthogonalization method, which is widely used
in lossy compression because of its moderate complexity in
which no band reordering is required. The basic idea of this class
of algorithms is to map the spatial domain of a hyperspectral
image into its transformation domain [2]. In this regard, the
Spectral Transform stage selects the most different pixels of
a hyperspectral image using orthogonal projection techniques.
Therefore, the selected pixels are used for projecting the image
in order to remove redundancies and, thus, obtain a spectral
decorrelated and compressed image.

The Spectral Transform applied by the HyperLCA compres-
sor is described in detail in Algorithm 1. The inputs of this
stage are the hyperspectral block to compress (Mk), which is
the same as the one being analyzed by the preprocessing stage,
and the number of most different pixels to extract (pmax), which
is the output of the preprocessing stage, i.e., it is responsible
for determining the number of transformations or orthogonal
projections to perform on the hyperspectral block. While the
outputs of this stage are the average pixel (µ̂) of the input
hyperspectral block (Mk), the set of indexes related to the pmax,
most different hyperspectral pixels (E), and their corresponding
projection vectors (V).

The first step of the algorithm is to centralize the hyperspectral
block (Mk) subtracting the average pixel (µ̂), which is obtained
by adding all the pixels of a band of the hyperspectral block

7028 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 16, 2023

Fig. 3. Pixel selection in a vineyard scenario (selected blocks in green color). (a) Original vineyard. (b) Line selection with low-compression ratio. (c) Line
selection with midcompression ratio. (d) Line selection with high-compression ratio. (e) Pattern of pixel selection. (f) Differences between selected pixels in (b)
and pattern. (g) Differences between selected pixels in (c) and pattern. (h) Differences between selected pixels in (d) and pattern.

and dividing by the number of pixels (BS); this operation is
performed for all the bands of the block, resulting in a vector with
nb (number of bands) elements (line 1 of Algorithm 1). Then, it is
used to get the centralized version of the hyperspectral block (C)
in line 2. In the second step, the pmax most characteristic pixels
are sequentially extracted from lines 3 to 13. For this purpose,
the brightness of each hyperspectral pixel within the block is
calculated following a vector normalization strategy, which is
defined as the product of each band within the hyperspectral
pixel with itself (lines 4–6 of Algorithm 1). Subsequently, the
highest brightness (jmax) in each iteration determines the pixels
to extract (en) from the original hyperspectral block (Mk), so
the algorithm searches for the maximum value of the previously
calculated brightness and then extracts the original pixel whose
index matches this maximum brightness; such operations are
performed in lines 7 and 8 of Algorithm 1, respectively. Af-
terward, the orthogonal vectors qn and un are obtained (lines
9 and 10); qn is the hyperspectral pixel of the block (Mk)
whose brightness value is the highest, while un is obtained
by dividing each value of qn by the brightness value. The
projection of each block pixel over the direction spanned by the
selected pixel is estimated with un orthogonal vector (line 11
of Algorithm 1). Finally, the extracted information is subtracted
from the centralized block C in line 12, resulting in a new hy-
perspectral block, also called C, that is the new input of the loop
block.

Accordingly, C retains the spectral information that is not
represented by the extracted pixels (E) and, thus, it also repre-
sents the information that will not be recovered in the decom-
pression process. Therefore, the highest pmax values reduce the
information that cannot be recovered. In this sense, the adaptive
distortion feature mitigates the lost of information in the relevant
blocks for the final application, so higher pmax values are applied
to those blocks.

Fig. 4. Overview of the bitstream structure generated.

C. Stage 3: Entropy Coding

The last stage of the HyperLCA compressor performs the
entropy coding of the vectors received from the Spectral Trans-
form stage, where the use of Golomb–Rice algorithm [30] makes
possible to consider each vector independently from the rest,
i.e., the outputs of Spectral Transform stage can be consumed
as they are received; thus, both stages are carried out in parallel.
To do so, the compression parameter (N) is calculated as the
average value of the vector being processed. Afterward, the
elements of the vector are divided by N as well as the quotient
(q) and the remainder (r) of such operation are also obtained.
Second, the lowest power of 2 higher than N is calculated as
b = log2(N) + 1. The quotient (q) is codified using unary code,
while the remainder (r) is coded as plain binary using b− 1
bits for r values smaller than 2b −N ; otherwise, it is coded as
r + 2b −N using b bits.

D. Bitstream Generation

Finally, the Data Packaging stage is performed to generate a
unique bitstream that contains the outputs of the aforementioned
compression stages. Fig. 4 graphically shows the structure gen-
erated for the compressed bitstream, which is divided into two
hierarchical blocks.

CABA et al.: FPGA-BASED HYPERSPECTRAL LOSSY COMPRESSOR WITH ADAPTIVE DISTORTION FEATURE 7029

Fig. 5. Overview of the hardware implementation related to the HyperLCA transform with quality control.

First, a Global Header takes place at the beginning of the
stream to define the global information about the hyperspectral
image, including the parameters used in the compression pro-
cess. It contains the spatial (number of columns and rows) and
spectral (number of bands) information of the processed image,
and it also denotes the block size used (BS), the number of
bits per pixel per band (DR), and the number of bits used for
representing the values of the compressed data (Nbits).

The payload is placed after the Global Header, which is bro-
ken into blocks that contains two fields: Block Header and Block
Payload. Owing to the fact that the blocks of a hyperspectral
image are compressed with a variety number of transformations,
it is mandatory to have an 8-bit header to determine the pmax

applied in each block. After the Block Header, there is the Block
Payload, which is composed of a single centroid regardless of
the distortion applied on the block and then the vectors E (most
different pixels) and V (projections), whose number is denoted
by the aforementioned 8-bit header.

III. FPGA IMPLEMENTATION OF HYPERLCA ALGORITHM

The HyperLCA compressor with adaptive distortion feature
has been implemented on reconfigurable hardware using high-
level synthesis (HLS) to define each operation involved in the
HyperLCA algorithm as a set of specialized hardware acceler-
ators. HLS reduces the development lifecycle due to the use of
high-level languages, such as C or C++, to describe the func-
tionality and include features that allow to optimize and improve
the functionality described by nonhardware engineers [31].

In this work, specialized hardware accelerators have been
reused from [8] to build the new architecture of the Hyper-
LCA transform, adding the dynamic behavior required to in-
clude multiple compression ratios. Fig. 5 shows an overview
of the hardware architecture implemented for preprocessing
and spectral transformation stages, where the blue boxes cor-
respond to the modules described in HLS, and are, therefore,
inherited from the previous development. These modules are

connected through memory buffers and custom logic that or-
chestrates them to obtain the desired behavior. For the sake
of clarity, the matching of the blue boxes with the operations
performed in Algorithm 1 is as follows: Avg_Cent corresponds
to lines 1 and 2, while loop_iter is the main loop body that
comprises from lines 3 to 13, where brightness is calculated in
the inner loop and line 7 of Algorithm 1; orthogonal vectors
(q and u) are also obtained once the brightest pixel is selected.
Meanwhile, projection and subtraction match with lines 11 and
12 of Algorithm 1, respectively. In pursuit of improving the per-
formance, the architecture introduces an enhancement through
the partitioning of the orthogonal vectors, q and u, using VHDL
instead of applying a pragma directive on the HLS description,
just before they are used by the projection and subtraction
modules.

Up to this point, the described architecture is responsible
to carry out the transformation process on the hyperspectral
blocks (Mk). However, the transform-based operations carried
out, i.e., the number of executions of the loop_iter module is
now calculated at runtime. The number of iterations is related to
the compression ratio applied to a block, which also means the
amount of hyperspectral data is represented for each block. Thus,
the QoS module manages this process as well as notifies the pmax

value used to encode the current hyperspectral block (Mk). In
contrast, the Analysis module is in charge of calculating the
number of iterations to be performed according to the similarity
between the pixels that compose a hyperspectral block and the
pattern signature.

Therefore, the Analysis module corresponds to Stage 1 (pre-
processing) and it is the first operation to be executed before per-
forming any transformation. In fact, the block analysis process
and the first operation of the spectral transform stage (i.e., the
calculation of the average pixel) work in parallel. To do so, the
Analysis module makes a copy of the hyperspectral block (Mk)
in batch mode as soon as it receives the block, so the Avg module
can begin to process it. The parallelism of both operations
allows to obtain the number of transformations to be applied

7030 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 16, 2023

Fig. 6. Overview of pipeline-based architecture to calculate the number of transformations (Number of PEs = 20).

to the current hyperspectral block with a negligible overhead
and it does not block the HyperLCA operations. Focusing on the
hardware implementation of the Analysis module, the operations
performed by this module have been segmented into a four-stage
pipeline and an additional decision stage that determines the
number of iterations (Niter) to apply in the spectral transform
stage. Fig. 6 shows an overview of the pipeline-based architec-
ture, which has been implemented in VHDL and whose stages
perform the following tasks.

Fetch: The data of the pattern signature (P) and hyper-
spectral block (Mk) are read in batch mode and stored in
pi and ri registers, respectively (see Fig. 6). Thus, this stage
reads as many bands as can be processed in parallel by the
operators of the spectral transform stage, e.g., 20 processing
elements (PEs) are required to process 20 spectral bands in
parallel. In this sense, the word widths of the internal memo-
ries/registers of the architectures, as shown in Figs. 5 and 6,
must be configured to work with the corresponding number of
bands. On top of that, the pattern signature, which is previously
stored in a ROM, is moved to a circular buffer before being
retrieved; this process is performed before the fetch stage and it
is done to save time and improve the performance because the
pattern must be used the same number of times as the number
of hyperspectral pixels contained in the captured image, i.e.,
the pattern signature is read BS times in a hyperspectral block
(Mk) and repeated by the lines that contain the hyperspectral
image.

Subtract: Once the hyperspectral data are ready, the subtract
stage subtracts from the current hyperspectral block (Mk) the
pattern signature by bands so that the first band of the hyperspec-
tral pixel belonging to the processed block is subtracted by the
first band of the stored pattern, then the second band of both, and
so on. These operations are also performed in parallel. Finally,
the absolute value of the operation is also calculated. The results
of this stage are stored in si registers, which are represented as
yellow and green boxes in Fig. 6.

Compare: The results obtained from each PE in the subtract
stage are compared with a constant value T , which is the
predefined delta value. Thus, if the constant T is smaller than
the result of the absolute subtraction obtained in the previous
stage, it means that the corresponding band is within the limits.
On the other hand, if the comparison results that T is greater,

it implies that the value of the band is outside the limits. The
output of this stage is a zero or one when the band is outside or
within the limits, respectively. In a similar way to the previous
stage, the results of the comparisons are also stored in ci registers
(yellow and purple boxes in Fig. 6).

Count: In this stage, the registers that contain a one, i.e., the
band is within the limits, are counted and added to a partial
sum, which is stored in z register (see Fig. 6). Thus, this register
is updated until the hyperspectral pixel is compared with the
pattern signature, then it is set to zero to compare the next pixel
of the hyperspectral block.

Finally, the decision stage is performed after the whole hyper-
spectral pixel of a block is compared with the pattern signature.
It determines whether a pixel is close to the pattern from the
sum value stored in the z register and calculated by the count
stage. In this sense, it is not necessary that all band values are
within the limits, the solution allows several bands to be out
of them (see blue line in Fig. 2). On top of that, the decision
stage sets the number of transform operations carried out by the
spectral transform stage. It is calculated by counting the number
of pixels close to the pattern signature (Tc) and, then, compare
such sum with the predefined user rules, which figures out the
provided quality of service, i.e., the degree of distortion. To do
that, the user must provide two constantsRmin andRmax to apply
the following cases, where QoSmax, QoSmin, and QoSmed are the
number of iterations that are also predefined; a high number
means greater spectral information extracted

⎧⎪⎨
⎪⎩
Niter = QoSmax, if Tc ≥ Rmax

Niter = QoSmin, if Tc ≤ Rmin

Niter = QoSmed, otherwise.

IV. RESULTS

The lossy compressor with adaptive distortion feature is eval-
uated in this section by analyzing the FPGA-based architec-
ture implemented on a ZC7Z020-CLG484 and the performance
achieved by it, comparing the throughput and power consump-
tion when several PEs are working in parallel. This section also
evaluates the accuracy of the limit method versus the use of
Euclidean distance, which involves complex operations, such as

CABA et al.: FPGA-BASED HYPERSPECTRAL LOSSY COMPRESSOR WITH ADAPTIVE DISTORTION FEATURE 7031

square root operation, that demand high computational resources
when it is developed in reconfigurable technology.

A. Hyperspectral Dataset Collected

The performance of the proposed FPGA-based architecture
has been evaluated by a set of hyperspectral images, which
were sensed by a custom aerial platform over different farming
areas on the island of Gran Canaria (Spain). The dataset contains
four hyperspectral images collected over two different vineyard
areas, whose exact coordinates are 27◦59′35.6′′N 15◦36′25.6′′W
and 27◦59′15.2′′N 15◦35′51.9′′W. For analysis purposes, the
dataset used in the previous work is kept [8].

The acquisition platform mounts a Specim FX10 push broom
hyperspectral camera on a DJI Matrice 600 drone [32]. The
image sensor captures 1024 spatial pixels per track and up to
224 spectral bands in the range between 400 and 1000 nm.
Nevertheless, the experiments performed only work with 180
spectral bands; the first 10 spectral bands are discarded as well
as the last 34 bands. This fact is done because the response in
the boundaries of the electromagnetic spectrum is low.

B. Evaluation of the Near Pixel Selection Method

The goodness of the pixel selection method through upper
and lower limits proposed in this work has been evaluated
and compared with the Euclidean distance. For doing so, the
analysis has been carried out using the set theory operations
to determine the similarity of the results obtained from both
solutions. Concretely, six different metrics have been applied
to analyze the set of pixels selected by the method used in this
work. It is worth mentioning that the result obtained, regardless
of the method used, is a set of pixels that are similar to the
reference pattern, and hence, the analysis must be driven by the
similarities between result sets.

In this context, the universal setU is composed of the index of
pixels within a hyperspectral block (Mk). Thus, U is defined as
U = {0, . . ., 1023} or U = {x | x ∈ N ∧ x ≤ 1023}. The set
of pixels selected by the Euclidean distance algorithm is denoted
as E (E ⊆ U), whereas the ones extracted by the limit method
are represented as L (L ⊆ U). The following lines describe the
six metrics used to determine the degree of similarity of the two
approaches.

True Positives: This metric analyzes the number of common
pixels selected by the two algorithms, i.e., the intersection op-
eration is applied to E and L sets, which are obtained by the
Euclidean distance and the limit method, respectively [see (2)].
Equation (3) calculates the percentage of hits in L relative to
E; a high percentage means that most pixels selected by the
Euclidean distance are also chosen by the limit method, but it
does not imply that they are very similar; the L set may contain
many more pixels than E does not

E ∩ L = {x | x ∈ E ∧ x ∈ L} (2)

n(E ∩ L)/n(E). (3)

False Negatives: In this case, it represents the pixels within E
but not in L, or in other words, it denotes the pixels that the

limit algorithm should have included in its solution set but are
not actually included. The set of false negatives is extracted
by the difference operation as (4) shows, where the common
pixels of E and L are extracted from E. This metric and the true
positive metric provide the degree of similarity between sets;
a low percentage of false negatives and a high percentage of
true positive means that two sets are very similar. Equation (5)
calculates the percentage of pixels not considered by the limit
method

E − L = {x | x ∈ E ∧ x /∈ L} (4)

n(E − L)/n(E). (5)

False Positives: This metric measures the degree of extra pixels
considered by the limit method. It is also calculated by the
difference operation but now the common pixels of E and L
are extracted from L instead of E [see (6)]. A small percentage
value of this metric implies that the solution is tight, whenever
the true positives metric has a high value and the false negatives
metric has a low value. The percentage of pixels included by the
limit method is calculated in (7)

L− E = {x | x /∈ E ∧ x ∈ L} (6)

n(L− E)/n(L). (7)

True Negatives: In this case, the metric denotes the pixels not
included in the solutions of both methods, i.e., the pixels that
are neither in E nor L. It is calculated by the union of E
and L sets and then the result is subtracted (difference op-
eration) from the universal set (U). Equation (8) shows the
operations performed to obtain the set of pixel considered as true
negatives, while (9) shows the formula to calculate the success
rate of this metric, where E′ is the true negatives of the result
obtained by the Euclidean distance algorithm

U − (E ∪ L) = {x | x ∈ U ∧ (x /∈ E ∨ x /∈ L)} (8)

n(U − (E ∪ L))/n(E ′). (9)

E is a subset of L: This metric determines whether the whole
set obtained from the Euclidean distance algorithm is a subset of
the set obtained by the limit method. It means that the solution
contains all pixels that the reference algorithm.
L is a subset of E: In this case, it denotes the lack of pixels in

the solution because the set obtained by the Euclidean distance
algorithm is greater than the one obtained by the limit method.
This metric and the above one are interesting to attend when a
large number of pixels are analyzed; with two sets of pixels, this
information can be extracted from the first four metrics.

Table I lists the percentage of similarity between the Euclidean
distance and limit methods to select the set of pixels close to the
pattern signature. To do so, the set obtained by the Euclidean
method must be satisfied that none of the members of such set
exceeds the value of 200 with respect to the distance to the
reference. Meanwhile, the limit method defines the upper and
lower boundaries according to the spectral values of the pattern
signature with a unique variable (limits column of Table I);
in addition, it also defines the maximum number of spectral
bands whose values are outside the boundaries (errors column of

7032 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 16, 2023

TABLE I
COMPARISON OF RESULTS OBTAINED BETWEEN THE EUCLIDEAN DISTANCE AND LIMIT METHODS

Table I). These parameters are configurable and, for the current
analysis, the selected values are listed in the two first columns
of Table I.

Analyzing the results, as shown in Table I, the best configura-
tions are those with a high percentage of true positives and a low
percentage of false positives and negatives. In this sense, the con-
figurations with 100% hits (true positives) have at the same time
the highest percentage of false positives, so they are not good
candidates, e.g., the last limit configuration listed in the table.
On the other hand, configurations with a low percentage of false
negatives and an acceptable percentage of true positives are not
good candidates either, for example, the second configuration of
the limits (Limits = ±20) reaches up to 94.68% in true positives,
but the value of the E ⊆ L metric is very low; 6.34%, 14.16%,
and 28.71% for 20, 25, and 30 Errors parameter configuration,
respectively. Thus, it means that most of the obtained sets do not
include all values obtained by the Euclidean distance method.
Focusing on the rest of the configurations, the best configuration
is the one whose Limits and Errors parameters are configured
with ±25 and 30, respectively. The obtained results with the
aforementioned configuration contain all pixels acquired by
the Euclidean distance but extending the sets by including more
pixels, as it denotes the false positives metric. In addition, the
second best configuration, Limits = ±24 and Errors = 30, is
also a very good candidate because of its balance between true
positives and false positives. Therefore, the limit method is a
suitable candidate to replace the Euclidean distance method
in reconfigurable devices due to the simplicity of the oper-
ations performed, as well as the similarity of the obtained
results.

C. Hardware Analysis

The proposed architecture has been implemented on a
ZC7Z020-CLG484 FPGA device for analysis purposes and with
a twofold objective; first, the architecture is kept in order to com-
pare this new version of the algorithm with the one previously

TABLE II
HARDWARE UTILIZATION OF HYPERLCA ALGORITHM WITH ADAPTIVE

DISTORTION FEATURE FOR AN XC7Z020-CLG484 SOC AFTER

POSTIMPLEMENTATION PHASE

implemented in [8]; second, the FPGA architecture (Artix) is a
cost-optimized device compared with other architectures of the
same manufacturer, such as Kintex or UltraScale/UltraScale+. In
this sense, the selected device provides a good tradeoff on three
aspects: cost, power consumption, and throughput. However, to
achieve a good ratio balance in performance/W, it is necessary
to invest engineering efforts in the architectural part as a conse-
quence of the limited resources of the ZynQ SoC. For the sake of
clarity, the hyperspectral images have been stored in an external
memory (DDR) to analyze the performance of the developed
architecture. Thus, the hardware accelerator reads the spatial
and spectral information of the hyperspectral images from the
DDR through an AXI-Stream interface using a direct memory
access.

Table II lists the programmable logic (PL) resources in accor-
dance with the number of PEs instantiated in each configuration
after postimplementation phase, where the PEs work in parallel
to process several bands in batch mode. The hyperspectral block
size (BS) is set to 1024 hyperspectral pixels, while the spatial
size is 180 bands. The number of PEs that can be instantiated
is 20 PEs since the number of available DSP units is 220 in
the ZC7Z020-CLG484 FPGA device and such configuration
requires 202 of these units. Thus, the DSPs are the limiting
resource of the proposed architecture because the next possible
configuration instantiates 30 PEs, so it will demand 257 DSPs,

CABA et al.: FPGA-BASED HYPERSPECTRAL LOSSY COMPRESSOR WITH ADAPTIVE DISTORTION FEATURE 7033

TABLE III
MSAMPLES/S ACHIEVED BY THE DIFFERENT VERSIONS OF THE HYPERLCA

ACCELERATOR WITH ADAPTIVE DISTORTION FEATURE FOR AN

XC7Z020-CLG484 SOC

i.e., a device with more hardware resources is requested. It is
worth mentioning that the number of PEs must be a divisor
of the number of bands to properly apply the optimizations.
Meanwhile, the rest of the hardware resources are not critical
for the scalability of the architecture, although the BRAMs are
between 74% and 83%; it really depends on the block size
parameter (BS), whose value is set at design time.

The throughput of each configuration of the hardware accel-
erator is depicted in MSamples/s, which depends on the number
of PEs instantiated and the clock frequency configuration. In
this sense, the RTL models for the HLS modules were gen-
erated setting the target clock frequency at 100 MHz. Then,
two versions of the bitstream were synthesized for two different
clock configurations: 100 and 143 MHz. From previous works,
the authors observed that, in some cases, the model generated
by the HLS tools differs greatly due to the characteristics of
the generation process, resulting in higher scheduling cycles
for shorter clock periods. Nevertheless, the Vivado tool was
able to handle the better 100 MHz RTL generated models and
synthesize a valid bitstream for other clock frequencies, fully
compliant with the platform timing constraints. Table III lists the
average of the MSamples/s achieved by the hardware accelerator
according to the number of PEs and the configuration of the
clock frequency. It is worth mentioning that the MSamples/s
metric mainly depends on two configuration parameters of the
hardware accelerator: the pattern signature and the rules that
determine the compression ratio applied to the current hyper-
spectral block. Thus, the MSamples/s values of Table III are
an average of the results obtained from the four sensed images
by the UAV platform by applying three rules, where the fast
versions (143 MHz) achieve 33% better performance than the
slow ones (100 MHz).

The hyperspectral sensor used to sense the images is based
on a Specim FX10, which is a push broom camera that can
be configured to set the size of each frame and the spatial
information sensed, i.e., the block size (BS) and the number of
hyperspectral bands, respectively. The BS has been configured
to the maximum allowed by this camera (1024 pixels) because
Diaz et al. [28] analyze the image quality by comparing the
SNR, RMSE, and MAD metrics to determine the quality of
the compression process with the same camera and conclude
that the best results are obtained with the maximum block size.
Thus, the selected hyperspectral sensor can capture 1024 pixels
with 224 bands with a maximum frame rate of 327 fps (full
range) [33], while the frame rate obtained to capture images of
1024 pixels with 180 bands is approximately 400 fps. There-
fore, analyzing the performance results and the features of

TABLE IV
POWER CONSUMPTION OF THE DIFFERENT VERSIONS OF THE HYPERLCA

ACCELERATOR WITH ADAPTIVE DISTORTION FEATURE FOR AN

XC7Z020-CLG484 SOC

the hyperspectral camera used to sense the images, the pro-
posed architecture is able to compress hyperspectral information
at runtime with six PEs and the clock frequency configured
at 143 MHz or with ten PEs with the clock frequency set at
100 MHz.

From the point of view of energy efficiency, the number of
PEs is the factor that increases the power requirements, as well
as the working temperature. Table IV lists the energy efficiency
depicted in MSamples/s per watt (MSs/W), i.e., the power con-
sumption obtained by the FPGA-based implementation of the
architecture according to the PEs and clock frequency parame-
ters, the power consumption of the hardware accelerator in W
(only the HyperLCA+QoS core), and the working temperature
in Celsius grades. The values listed in Table IV have been
reported by the AMD-Xilinx for the worst-case scenario after
postimplementation stage, showing the variation of the different
parameters as the SoC configuration increases the number of
PEs. To do the accurate analysis of the worst-case scenario, the
parameters of the process have been set to a maximum value
in order to obtain the power consumption and thermal values
in such a scenario. This way, the power and thermal delivery
solution will work with any device that will be shipped [34].
Regarding the energy efficiency, the MSs/W tradeoff has been
calculated with the power consumption, including the embedded
microcontroller, i.e., the processing system (PS) and PL parts of
the targeted device. It does not draw a linear behavior since
the number of PEs working in parallel increases the number of
hardware resources, as well as the power consumption of the
FPGA part; the energy budget of the static part is stable. In
this sense, Table IV also presents the power utilization by the
hardware implementation of the HyperLCA algorithm, which
demonstrates that the architecture is highly efficient because the
main energy budget is consumed by the hardcoded embedded
processor (1.533 W), so the extra power of the FPGA-based
implementation needed is ranging from 0.314 W and 0.416 W
for the 100 MHz and 143 MHz versions, respectively. On top of
that, the working temperature does not have a major impact on
the 143 MHz versions of the system or on the number of PEs
working in parallel.

Although Vivado’s power analysis tools provide the accu-
rate power-consumption results after postimplementation phase,
there are other hardware components outside the FPGA device
that are involved in the compression hyperspectral process, such
as external memory (RAM), that are not considered in the

7034 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 16, 2023

TABLE V
POWER CONSUMPTION OF THE DESIGN ON ZEDBOARD (XC7Z020-CLG484)

WITH CURRENT SENSE (J21 CONNECTOR)

Fig. 7. Performance and power tradeoff analysis of HyperLCA algorithm
with adaptive distortion feature in its versions 100 and 143 MHz on ZedBoard
(XC7Z020-CLG484) through the current sense (J21 connector).

power reports. Unfortunately, the ZedBoard platform, which
includes XC7Z020-CLG484 as a PL part, does not have multiple
power sources to obtain real-time information about the power
consumption, so a fine-grain measurement cannot be performed,
such as AMD-Xilinx power estimation tool does. On the other
hand, the Vivado hardware manager tool monitors the supply
voltage of PS and PL parts, but the refresh rate is too low.
Therefore, the power consumption of the architecture presented
in this article has been measured in the ZedBoard platform across
the on-board current sense port (J21 connector), using a multi-
meter with enough resolution to show the difference in power
consumption when a compression process is performed [35].
Table V lists the power consumption in W and energy efficiency
in MSs/W in the different versions of the HyperLCA with
distortion feature. To calculate the current power consumption,
the multimeter has been connected to the J21 connector to
measure the voltage across a 10 mΩ resistor. Thus, the power
input to the board is calculated with the following equations,
where Vj21 is the voltage measured in the J21 connector, R is
10 mΩ, and Vin is the input supply voltage (Vin = 12V):

I = Vj21/R (10)

P (W) = I × Vin. (11)

Fig. 7 graphically shows a comparison of performance and
power-consumption tradeoff between the 100 MHz (blue bars
and purple line) and 143 MHz (red bars and orange line) of
the HyperLCA algorithm with adaptive distortion feature. The
power consumption has a similar behavior in both versions,

Fig. 8. Comparison of hardware resource utilization in HyperLCA algorithm
with and without adaptive distortion feature. (a) BRAM18 K. (b) DSP48E.
(c) Flip-flops. (d) LUTs.

whose variations depend on the number of PEs working in
parallel, while energy efficiency in the 143 MHz version is 30%
higher than 100 MHz version. On the other hand, the efficiency
variation with respect to the data collected in Table IV, where
only the FPGA power consumption (PS + PL) is taken into
account, has been reduced by 35% and 31% for the 100 MHz
and 143 MHz versions, respectively.

V. DISCUSSION

The HyperLCA algorithm with adaptive distortion feature
has been compared with the previous implementation published
in [8]. Both hyperspectral lossy compressors have been imple-
mented on reconfigurable hardware, concretely in a ZC7Z020-
CLG484 FPGA device. Thus, the performance and hardware
resource utilization of the two versions are compared and ana-
lyzed, as well as the information extracted by each implemen-
tation in terms of size and quality. In addition, the hyperspec-
tral lossy compressor presented in this article has been com-
pared with other state-of-the-art transform-based compressors
in which reconfigurable devices have been selected to deal with
the experimental results of the proposals.

A. Comparison With the Previous Hardware Implementation
of the HyperLCA Lossy Compressor

Fig. 8 graphically shows the hardware resource utilization
of the HyperLCA algorithm with (HLCA+QoS) and without
(HLCA) adaptive distortion feature. The number of BRAMs
increases slightly in this new version of the algorithm because
the pattern analysis stage introduces new internal memories [see

CABA et al.: FPGA-BASED HYPERSPECTRAL LOSSY COMPRESSOR WITH ADAPTIVE DISTORTION FEATURE 7035

Fig. 9. Performance and power tradeoff analysis of HyperLCA algorithm with
and without adaptive distortion feature (100 MHz).

Fig. 10. Performance and power tradeoff analysis of HyperLCA algorithm
with and without adaptive distortion feature (143 MHz).

Fig. 8(a)] while the number of DSPs is kept [see Fig. 8(b)].
However, flip-flops and LUTs are considerably reduced by
some optimizations performed; the main optimization carried
out is the manual partitioning of the orthogonal vectors, u and
q, by a factor equal to the number of PEs that contain the
hardware accelerator. For the sake of clarity, the FFs and LUTs
are the limiting factors that prevent the deployment of PEs in
the previous version of the hardware accelerator, rather than
DSPs, which are the limiting factor in this new version. Thus,
the best configuration of the HyperLCA with distortion feature,
i.e., the 20 PEs version, is not considered in the hardware
resource utilization comparison because it cannot be compared.

The performance and power tradeoff achieved by the Hyper-
LCA with and without adaptive distortion feature are shown in
Figs. 9 and 10, where the clock frequency has been configured at
100 MHz and 143 MHz, respectively. The new version gets better
MSs/W, and it is doubled in the configurations that instantiate
10 and 12 PEs; the light blue bars of Figs. 9 and 10 show the
MSs/W achieved by the previous implementation of the Hy-
perLCA, while the light red bars of the aforementioned figures
represent the obtained MSs/W by the implementation presented
in this article. The other configurations slightly improve the
MSamples/s achieved (see blue and red bars of Figs. 9 and
10). In turn, the performed optimizations also reduce the power

TABLE VI
DEFINED RULES FOR EXPERIMENTAL RESULTS PURPOSE

Fig. 11. Compression data size of HyperLCA algorithm with and without
adaptive distortion feature with different configurations.

consumption of the hardware accelerator with respect to the
previous version, which is more evident for cases with a higher
number of instantiated PEs; purple and orange lines of Figs. 9
and 10 draw the watts of the hardware accelerator with and
without the adaptive distortion feature, respectively.

The previous implementation of the hyperspectral lossy com-
pressor extracts the identical amount of spectral information
from each block that composes the hyperspectral image, so the
applied compression ratio is linear and is defined at design time.
It means that the size of extracted data is equal for hyperspectral
images with the same spatial and spectral values and the quality
performance of compression is kept. Nevertheless, the adaptive
distortion feature introduces a nonlinear behavior in terms of
quality performance and compression ratio, as well as preserves
the linearity feature of transform-based algorithms, i.e., the set
of core operations applied to extract the spectral information has
a linear behavior. To do so, the number of iterations performed
on the set of core operations is set by the predefined rules that
depend on the number of pixels close to the hyperspectral pattern
signature. For experimental results, the three rules, listed in
Table VI, have been defined to be applied to the sensed images;
meanwhile, the pattern signatures have been selected from a
previous flight, where the weather was similar to that of the
compression flight.

Fig. 11 graphically shows the compression data size after
the compression process of a hyperspectral image of 377.5 MB
using the previous implementation of the HyperLCA algorithm
and the modified one. The hyperspectral cube is composed of
1024 samples, 1024 lines, and 180 bands. The compression
ratio of the original implementation of the HyperLCA lossy
compressor has been set at design time with the following values:
CR = 12, CR = 16, and CR = 20, which match with blue, or-
ange, and green dotted lines of Fig. 11, respectively. On the other

7036 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 16, 2023

hand, the blue bars of Fig. 11 illustrate the nonlinear behavior of
the spectral extraction in the HyperLCA lossy compressor with
adaptive distortion in which four hyperspectral pixels have been
selected as signature patterns to obtain the number of iterations
to be applied for each sample of the image according to the
rules defined in Table VI. The number of iterations (Niter) has
been set to 12, 9, and 7 for the high, medium, and low quality
of service, respectively. These values match with the number
of iterations performed by the original implementation of the
HyperLCA algorithm in the three aforementioned CR configu-
rations, but they can be modified to obtain better compression
quality performance.

It is worth mentioning that each hyperspectral block, Mk,
contains a header block (see Fig. 4), so a small-size overhead is
included. This overhead is actually 8-bits per block, i.e., 1 kB
is the overhead introduced by the proposed solution for the
images used because they contain 1024 lines. Therefore, the
maximum and minimum size of the compressed data are close
to blue and green dotted lines of Fig. 11. Since the compression
size depends on the two aforementioned factors.

The compression performance of the HyperLCA with
adaptive distortion has been evaluated by compress-
ing/decompressing a hyperspectral image with four pattern
signatures and three rules (see Table VI). The spectral
information lost after the compression process has been
analyzed using three conventional metrics: the SNR, the RMSE,
and the MAD, which are shown in (12)–(14), respectively. The
SNR and the RMSE provide the average information lost in
the compression process, where high values of the SNR metric
are signs of better compression performance. Meanwhile,
higher RMSE values mean the compression process is not
accurate and introduces large information losses. Finally, the
MAD metric depicts the amount of lost information for the
worst reconstructed image value, where 4096 (212) is the worst
possible value

SNR = 10 · log10
(∑nb

i=1

∑np
j=1(Ii,j)

2∑nb
i=1

∑np
j=1(Ii,j − Ici,j)2

)
(12)

RMSE =
1

np · nb ·
√∑nb

i=1

∑np

j=1
(Ii,j − Ici,j)2 (13)

MAD = max(Ii,j − Ici,j). (14)

Table VII presents the average results obtained for the Hyper-
LCA compressor in the three first rows for CR = 12, CR = 16,
and CR = 20, whilse the rest of the rows are the result obtained
by the modified version of the algorithm, i.e., including the adap-
tive distortion feature. These results draw different conclusions
that should be considered. First, the results are between the
lowest and highest configurations of the original implementa-
tion because the QoS has been defined with the same number
of iterations that the configuration set for the implementation
without distortion feature. In addition, it is confirmed that the
proposed solution provides better quality compression results
than the ones obtained by the previous implementation with
the highest compression ratio. It is worth mentioning that the
compression performance results obtained by the Pixel 1 - Rule

TABLE VII
COMPARISON OF THE QUALITY COMPRESSION RESULTS FOR THE HYPERLCA

WITH AND WITHOUT ADAPTIVE DISTORTION FEATURE

1 configuration are equal to the CR = 20 configurations, but
the spectral information extracted differs because the distortion
feature is able to retrieve more spectral information from the
areas of interest; hence, the data compression size is lager
(see Fig. 11). Furthermore, it can also be concluded that the
HyperLCA lossy compressor with adaptive distortion is able to
compress the hyperspectral data with high compression ratios
and without introducing significant spectral information losses.

B. Comparison With Other State-of-the-Art Compressors

Furthermore, the throughput and hardware resource utiliza-
tion of the hyperspectral lossy compressor with adaptive dis-
tortion feature have been compared with other state-of-the-
art compressors also implemented on reconfigurable hardware.
The state-of-the-art architectures and the one explained in this
article are summarized in Table VIII, where the selected device,
the implemented algorithm, the hardware resource utilization,
the clock frequency, and the achieved throughput (MSamples/s)
are listed for each proposal. In addition, the performance analysis
has been expanded in Table IX, where the power consumption is
included as well as the relationship between throughput in MB/s
and W.

Prediction-based compression algorithms are good candidates
to be implemented on reconfigurable hardware because of the
suitability of matrix operations on them. Typically, they depend
on the correlation between adjacent pixels in hyperspectral data
in which the differences between correlated values are encoded
with fewer bits than the actual values. Báscones et al. present
an architecture based on low-complexity predictive lossy com-
pression (LCPLC), which is an algorithm based on prediction,
uniform threshold quantization, and rate–distortion optimiza-
tion. Thus, the proposed solution implements a pipeline archi-
tecture developed in VHDL and deployed on XQR5VFX130
and XC7VX690 T devices in [40] and [41], respectively.
The proposed architecture achieves a throughput of up to

CABA et al.: FPGA-BASED HYPERSPECTRAL LOSSY COMPRESSOR WITH ADAPTIVE DISTORTION FEATURE 7037

TABLE VIII
HARDWARE RESOURCE AND THROUGHPUT COMPARISON WITH OTHER FPGA-BASED IMPLEMENTATIONS OF HYPERSPECTRAL COMPRESSORS

TABLE IX
PERFORMANCE COMPARISON WITH OTHER FPGA-BASED IMPLEMENTATIONS OF HYPERSPECTRAL COMPRESSORS

162 MSamples/s and a low-power requirement, roughly
0.714 W. Meanwhile, lossy compression for exomars (LCE) is
an algorithm designed for on-board image compression for the
European Space Agency ExoMars mission. It consists of four
phases: prediction, rate–distortion optimization, quantization,
and entropy coding using Golomb codes. It has been accelerated
by Santos et al. and García et al. in [36] and [37] using recon-
figurable hardware. Both solutions have been developed with
HLS (CatapultC) by obtaining good ratio between hardware uti-
lization and throughput. Keymulen [38] implements the FLEX
algorithm by introducing a feedback branch with an inverse
predictor. It can estimate the value of subsequent samples by
controlling the image quality with an adaptive filtering defined
by the user. The architecture achieves up to 95 MSamples/s when
15 cores are instantiated by increasing 19× when only one core
is working; however, the hardware utilization is considerably
increased.

Barrios et al. [42] propose the implementation of a lossy ex-
tension of CCSDS by adding a quantizer and a bit-rate feedback
loop to control the losses and achieve the desired compression
ratios without excessively deteriorating the quality of the decom-
pressed image. The algorithm has been implemented using HLS
techniques and has been implemented on a reconfigurable scal-
able architecture (ARTICo), which provides adaptive computing
at runtime to increase the number of instantiated cores and,
hence, the performance achieved. Thus, the solution working
with one core gets 0.4 MSamples/s, while the one instantiating
eight cores achieves 1.7 MSamples/s. Although the runtime
flexibility of the ARTICo architecture is a value-added feature

in space scenarios, the main problem lies in the context switches
and in the movement of data to the local memories of each of
the eight reconfigurable regions.

The transform-based algorithms are also suitable for reconfig-
urable hardware. The basic idea behind this class of algorithms
is to map the spatial domain of an image into its transformation
domain. Then, the coefficients with larger amplitude, or energy,
are encoded with fewer codewords than coefficients with low
amplitude to obtain higher compression ratios. The transform
function is first applied to generate the transform coefficients.
Then, the transform coefficients are decorrelated to remove
redundancy. Finally, the output coefficients are passed to the
entropy encoder to generate the compressed stream. Fernández
et al. [39] propose a principal component analysis (PCA) based
solution in reconfigurable hardware by using VHDL to carry
out the dimensionality reduction in hyperspectral images. Mean-
while, the architecture presented in this article and its previous
implementation in [8] are based on transform operations in
which a high parallelization of the operations results in the
highest performance.

From the point of view of hardware resource utilization,
Table VIII lists the FPGA-based resource utilization of each
hyperspectral compressor and its percentage according to the
selected device. Thus, the percentage of utilization can be used
to compare the state-of-the-art architectures in order to avoid
misleading interpretations of information, where most solutions
use mid or large FPGA devices instead of cost-optimized ones,
or where customized embedded resources, such as DSPs, are not
properly used to perform mathematical operations. In this sense,

7038 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 16, 2023

our architecture achieves the best throughput of the proposed
architectures, up to 1149 MSamples/s; it is mainly due to the
instantiation of DSPs to carry out the operations of transforma-
tions instead of the use of other unsuitable FPGA resources for
such operations. This behavior is also seen in other proposals,
such as the one presented by Keymulen [38] or Fernández et
al. [39]; the version with 15 cores working in parallel presented
by Keymulen achieves higher throughput that the version with
a core; it increases the number of DSPs and reduces the clock
frequency. It can be concluded that the use of a hybrid solution,
VHDL and HLS, obtains a good use of hardware resources and
maintains the benefits of both, i.e., the engineering productivity
is kept by using HLS to describe some modules/parts of the
architecture, while the modules that require a high degree of
parallelism are developed with a hardware description language,
as well as the FSM to synchronize the parts described with
HLS.

Table IX presents a detailed performance summary achieved
by the state-of-the-art architectures and the one presented in
this work, using the values obtained after postimplementation
phase in order to analyze the architectures at the same point.
In addition, the table also lists in the second last column the
on-chip power depicted in W. Unfortunately, some state-of-the-
art proposals do not provide such information, so it has been
estimated with the XPE tool. The use of specialized embedded
resources of the FPGA does not have a high impact on the
power consumption, but it depends on the number of clock
regions that are active, the amount of resources, and the FPGA
technology used. In this sense, the architecture presented by
Keymulen [38] requires more power than the one presented by
Báscones et al. [41], where both proposals use the same FPGA
device and VHDL to describe the architecture; the difference
lies in the number of FPGA resources used for each proposal.
We can conclude that the architecture presented in this work
beats the other state-of-the-art proposals in the MB/s per watt
(MBS/W) tradeoff, where the fastest version of the HyperLCA
compressor with distortion feature, i.e., the version that contains
20 PEs working in parallel, is between 4.9× and 5.8× better
than the architecture presented by Báscones et al. [41], when
the clock frequency is configured at 100 MHz and 143 MHz,
respectively.

It is worth mentioning that the previous implementation of
the HyperLCA compressor is between 3.6× and 4.1× slower
than the version with adaptive distortion feature. In addition,
the clock frequency configuration has little influence on the
rate of MB/s/W, and it is increased by 54.66 MBs/W when
the clock frequency is set to 143 MHz. Therefore, the archi-
tecture presented in this work is able to compress the afore-
mentioned hyperspectral image of 1024×1024 spatial size and
180 spectral bands in 0.935 s with a power consumption of
1.145 W.

VI. CONCLUSION

This work has dealt with the inclusion of the adaptive distor-
tion feature in the HyperLCA algorithm in order to increase
the spectral information in those regions of interest, whose
spectral information contains an amount of pixels close to a

predefined hyperspectral pattern signature. Thus, the proposal
can be adapted to the scenario that is being processed, e.g., more
spectral information could be collected from the vegetation than
from the soil in a vineyard. In addition, the compressor can be
configured to increase the information in the lines that contain
anomaly pixels, e.g., ships in the middle of the sea.

The set of core hyperspectral operations is inherited from
previous works [8], [9], where the suitability of the FPGA
technology for this type of application was tested, so a significant
amount of time is saved. However, the new architecture includes
new optimizations that allow to instantiate more PEs working in
parallel. Consequently, the throughput is considerably increased
by the optimizations performed, whereas the adaptive distortion
feature introduces a small overhead in size terms due to the need
to include an 8-bit header for each sample that is compressed.
The solution combines HLS and VHDL modules, bringing an
efficient dataflow that meets the requirements of an on-board
real-time processing with a push broom camera, concretely with
the Specim FX10.

Furthermore, we provide a comparison with other FPGA-
based architectures of the state-of-the-art in which the con-
clusions learned from the discussion reveal that the proposed
architecture is a cost–energy-efficient solution without reducing
the compression quality when the number of transform-based
operations carried out is between the ones defined in the previous
implementation. Moreover, the loss spectral information can be
reduced by increasing the parameter pmax, so better compression
quality can be achieved.

REFERENCES

[1] A. Plaza et al., “Recent advances in techniques for hyperspectral
image processing,” Remote Sens. Environ., vol. 113, pp. S110–S122,
2009.

[2] A. Altamimi and B. B. Youssef, “A systematic review of hardware-
accelerated compression of remotely sensed hyperspectral images,” Sen-
sors, vol. 22, no. 1, 2022, Art. no. 263.

[3] M. Radosavljević et al., “Lossy compression of multispectral
satellite images with application to crop thematic mapping: A
HEVC comparative study,” Remote Sens., vol. 12, no. 10, 2020,
Art. no. 1590.

[4] F. Ortenberg, P. Thenkabail, J. Lyon, and A. Huete, “Hyperspectral sen-
sor characteristics: Airborne, spaceborne, hand-held, and truck-mounted;
integration of hyperspectral data with LIDAR,” in Hyperspectral Re-
mote Sensing of Vegetation. Boca Raton, FL, USA: CRC Press, 2011,
pp. 39–68.

[5] J. M. Melián et al., “Real-time hyperspectral data transmission for
UAV-based acquisition platforms,” Remote Sens., vol. 13, no. 5, 2021,
Art. no. 850.

[6] E. Morin, M. Maman, R. Guizzetti, and A. Duda, “Comparison of the
device lifetime in wireless networks for the Internet of Things,” IEEE
Access, vol. 5, pp. 7097–7114, 2017.

[7] R. Guerra, E. Martel, J. Khan, S. López, P. Athanas, and R. Sarmiento,
“On the evaluation of different high-performance computing platforms
for hyperspectral imaging: An OpenCL-based approach,” IEEE J. Sel.
Topics Appl. Earth Observ. Remote Sens., vol. 10, no. 11, pp. 4879–4897,
Nov. 2017.

[8] J. Caba, M. Díaz, J. Barba, R. Guerra, and J. A. de la Torre, and S. López,
“FPGA-based on-board hyperspectral imaging compression: Benchmark-
ing performance and energy efficiency against GPU implementations,”
Remote Sens., vol. 12, no. 22, 2020, Art. no. 3741. [Online]. Available:
https://www.mdpi.com/2072-4292/12/22/3741

[9] R. Guerra, Y. Barrios, M. Díaz, A. Baez, S. López, and R. Sarmiento,
“A hardware-friendly hyperspectral lossy compressor for next-generation
space-grade field programmable gate arrays,” IEEE J. Sel. Topics
Appl. Earth Observ. Remote Sens., vol. 12, no. 12, pp. 4813–4828,
Dec. 2019.

https://www.mdpi.com/2072-4292/12/22/3741

CABA et al.: FPGA-BASED HYPERSPECTRAL LOSSY COMPRESSOR WITH ADAPTIVE DISTORTION FEATURE 7039

[10] G. Benelli, G. Meoni, and L. Fanucci, “A low power keyword spotting al-
gorithm for memory constrained embedded systems,” in Proc. IFIP/IEEE
Int. Conf. Very Large Scale Integr., 2018, pp. 267–272.

[11] T. Yan, N. Zhang, J. Li, W. Liu, and H. Chen, “Automatic deployment of
convolutional neural networks on FPGA for spaceborne remote sensing
application,” Remote Sens., vol. 14, no. 13, 2022, Art. no. 3130.

[12] M. Xu, L. Chen, H. Shi, Z. Yang, J. Li, and T. Long, “FPGA-based
implementation of ship detection for satellite on-board processing,” IEEE
J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 15, pp. 9733–9745,
Oct. 2022.

[13] S. Liu and W. Luk, “Towards an efficient accelerator for DNN-based
remote sensing image segmentation on FPGAs,” in Proc. 29th Int. Conf.
Field Programmable Log. Appl., 2019, pp. 187–193.

[14] G. Furano et al., “Towards the use of artificial intelligence on the edge
in space systems: Challenges and opportunities,” IEEE Aerosp. Electron.
Syst. Mag., vol. 35, no. 12, pp. 44–56, Dec. 2020.

[15] L. Li, S. Zhang, and J. Wu, “Efficient object detection framework and
hardware architecture for remote sensing images,” Remote Sens., vol. 11,
no. 20, 2019, Art. no. 2376.

[16] Intel Movidius, VPU intel movidius myriad X, Accessed on: Mar.,
10 2023. [Online]. Available: https://www.intel.es/content/www/es/es/
products/sku/204770/intel-movidius-myriad-x-vision-processing-unit-
0gb/specifications.html

[17] Coral.ia, “Coral dev board datasheet,” Accessed on: Mar. 10, 2023.
[Online]. Available: https://coral.ai/docs/dev-board/datasheet/#system-
components

[18] V. Kothari, E. Liberis, and N. D. Lane, “The final frontier: Deep learning
in space,” in Proc. 21st Int. Workshop Mobile Comput. Syst. Appl., 2020,
pp. 45–49.

[19] E. Rapuano et al., “An FPGA-based hardware accelerator for cnns in-
ference on board satellites: Benchmarking with myriad 2-based solu-
tion for the cloudscout case study,” Remote Sens., vol. 13, no. 8, 2021,
Art. no. 1518.

[20] B. Huang, Satellite Data Compression. New York, NY, USA: Springer,
2011.

[21] Consultative Committee for Space Data Systems (CCSDS), “Image
data compression. CCSDS, Green Book 120.1-G-3,” Accessed on: Sep.,
29 2022. [Online]. Available: https://public.ccsds.org/Pubs/120x1g3.pdf

[22] Y. Dua, V. Kumar, and R. S. Singh, “Comprehensive review of hyper-
spectral image compression algorithms,” Opt. Eng., vol. 59, no. 9, 2020,
Art. no. 090902.

[23] A. B. Kiely et al., “The new CCSDS standard for low-complexity lossless
and near-lossless multispectral and hyperspectral image compression,”
Nat. Aeronaut. Space Admin., no. 2, Washington, DC, USA, Dec. 2022.

[24] E. Augé, J. E. Sánchez, A. Kiely, I. Blanes, and J. Serra-Sagrista, “Perfor-
mance impact of parameter tuning on the CCSDS-123 lossless multi- and
hyperspectral image compression standard,” J. Appl. Remote Sens., vol. 7,
no. 1, 2013, Art. no. 074594.

[25] L. Santos, E. Magli, R. Vitulli, J. F. López, and R. Sarmiento, “Highly-
parallel GPU architecture for lossy hyperspectral image compression,”
IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 6, no. 2,
pp. 670–681, Apr. 2013.

[26] Y. Barrios, A. J. Sánchez, L. Santos, and R. Sarmiento, “SHyLoC
2.0: A versatile hardware solution for on-board data and hyperspectral
image compression on future space missions,” IEEE Access, vol. 8,
pp. 54269–54287, 2020.

[27] R. Guerra, Y. Barrios, M. Díaz, L. Santos, S. López, and R. Sarmiento,
“A new algorithm for the on-board compression of hyperspectral images,”
Remote Sens., vol. 10, no. 3, 2018, Art. no. 428.

[28] M. Díaz et al., “Real-time hyperspectral image compression onto embed-
ded GPUs,” IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 12,
no. 8, pp. 2792–2809, Aug. 2019.

[29] I. Vasilyeva, F. Li, S. Abramov, V. V. Lukin, B. Vozel, and K. Chehdi,
“Lossy compression of three-channel remote sensing images with con-
trollable quality,” in Proc. Image Signal Process. Remote Sens. XXVII,
2021, pp. 205–216.

[30] P. G. Howard and J. S. Vitter, “Fast and efficient lossless
image compression,” in Proc. Data Compression Conf., 1993,
pp. 351–360.

[31] J. Cong, B. Liu, S. Neuendorffer, J. Noguera, K. Vissers, and Z. Zhang,
“High-level synthesis for FPGAs: From prototyping to deployment,”
IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., vol. 30, no. 4,
pp. 473–491, Apr. 2011.

[32] P. Horstrand, R. Guerra, A. Rodríguez, M. Díaz, S. López, and J. F. López,
“A UAV platform based on a hyperspectral sensor for image capturing and
on-board processing,” IEEE Access, vol. 7, pp. 66919–66938, 2019.

[33] Specim, Spectral Imaging, Ltd., “Specim fx10 datasheet,” Accessed on:
Dec. 1, 2022. [Online]. Available: https://www.specim.fi/wp-content/
uploads/2020/02/Specim-FX10-Technical-Datasheet-04.pdf

[34] AMD-Xilinx, “Seven steps to an accurate worst-case power analysis
using the Xilinx power estimator,” Accessed on: Apr., 15 2023. [Online].
Available: https://docs.xilinx.com/v/u/en-US/xapp1348-power-analysis

[35] Velleman, “User manual: DVM1200—Multimeter with USB interface,”
Accessed on: May, 26 2023. [Online]. Available: https://www.velleman.
eu/downloads/1/dvm1200gbnlfresdplit.pdf

[36] L. Santos, J. F. López, R. Sarmiento, and R. Vitulli, “FPGA implementation
of a lossy compression algorithm for hyperspectral images with a high-
level synthesis tool,” in Proc. NASA/ESA Conf. Adaptive Hardware Syst.,
2013, pp. 107–114.

[37] A. García, L. Santos, S. López, G. Marrero, J. F. López, and R. Sarmiento,
“High level modular implementation of a lossy hyperspectral image com-
pression algorithm on a FPGA,” in Proc. 5th Workshop Hyperspectral
Image Signal Process., Evol. Remote Sens., 2013, pp. 1–4.

[38] D. Keymeulen, “FPGA implementation of lossless and lossy compression
of space-based multispectral and hyperspectral imagery,” Mil. Aerosp.
Programmable Logic Devices (MAPLD) Workshop, La Jolla, CA, 2016.

[39] D. Fernández, C. González, D. Mozos, and S. Lopez, “FPGA implemen-
tation of the principal component analysis algorithm for dimensionality
reduction of hyperspectral images,” J. Real-Time Image Process., vol. 16,
pp. 1395–1406, 2019.

[40] D. Báscones, C. González, and D. Mozos, “An extremely pipelined FPGA
implementation of a lossy hyperspectral image compression algorithm,”
IEEE Trans. Geosci. Remote Sens., vol. 58, no. 10, pp. 7435–7447,
Oct. 2020.

[41] D. Báscones, C. González, and D. Mozos, “An FPGA accelerator for real-
time lossy compression of hyperspectral images,” Remote Sens., vol. 12,
no. 16, 2020, Art. no. 2563.

[42] Y. Barrios et al., “Lossy hyperspectral image compression on a recon-
figurable and fault-tolerant FPGA-based adaptive computing platform,”
Electronics, vol. 9, no. 10, 2020, Art. no. 1576.

Julián Caba received the M.S. degree in computer
science and the Ph.D. degree in computer science
from the University of Castilla-La Mancha (UCLM),
Ciudad Real, Spain, in 2009 and 2018, respectively.

He is currently an Assistant Professor with TSI
Department, UCLM. His current research interests
include hardware verification methodologies, embed-
ded systems, high-level synthesis, runtime reconfig-
urable systems, and heterogeneous distributed sys-
tems.

Dr. Caba was a recipient of the Ph.D. category in
the Xilinx Open Hardware Contest in 2017.

Dirk Stroobandt (Member, IEEE) received the Ph.D.
degree in electrotechnical engineering from Ghent
University, Ghent, Belgium, in 1998.

He was a Visiting Researcher with the University of
California at Irvine, Irvine, CA, USA, in 1997, and the
University of California at Los Angeles, Los Angeles,
CA, USA, from 1999 to 2000. He is currently a
Full Professor with Computer Systems Laboratory,
Department of Electronics and Information Systems,
Ghent University, where he also leads the research
group Hardware and Embedded Systems with inter-

ests in semiautomatic hardware design, runtime field-programmable gate array
reconfiguration, and reconfigurable multiprocessor networks.

https://www.intel.es/content/www/es/es/products/sku/204770/intel-movidius-myriad-x-vision-processing-unit-0gb/specifications.html
https://www.intel.es/content/www/es/es/products/sku/204770/intel-movidius-myriad-x-vision-processing-unit-0gb/specifications.html
https://www.intel.es/content/www/es/es/products/sku/204770/intel-movidius-myriad-x-vision-processing-unit-0gb/specifications.html
https://coral.ai/docs/dev-board/datasheet/#system-components
https://coral.ai/docs/dev-board/datasheet/#system-components
https://public.ccsds.org/Pubs/120x1g3.pdf
https://www.specim.fi/wp-content/uploads/2020/02/Specim-FX10-Technical-Datasheet-04.pdf
https://www.specim.fi/wp-content/uploads/2020/02/Specim-FX10-Technical-Datasheet-04.pdf
https://docs.xilinx.com/v/u/en-US/xapp1348-power-analysis
https://www.velleman.eu/downloads/1/dvm1200gbnlfresdplit.pdf
https://www.velleman.eu/downloads/1/dvm1200gbnlfresdplit.pdf

7040 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 16, 2023

María Díaz was born in Spain, in 1990. She received
the Industrial Engineering degree from the University
of Las Palmas de Gran Canaria (ULPGC), Las Palmas
de Gran Canaria, Spain, in 2014, the master’s degree
in system and control engineering jointly from the
Universidad Complutense de Madrid and the Uni-
versidad Nacional de Educacin a Distancia, Madrid,
Spain, in 2017 and the Ph.D. degree in telecommuni-
cation technologies and computer engineering from
the ULPGC, Las Palmas de Gran Canaria, Spain, in
2021.

She developed her research activities with Integrated Systems Design Divi-
sion, Institute for Applied Microelectronics, ULPGC. Additionally, she con-
ducted a research stay with GIPSA-Lab, University of Grenoble Alpes, France,
and the University of Castilla-La Mancha, Spain. Her research interests include
image and video processing, development of highly parallelized algorithms for
hyperspectral image processing, and hardware implementation.

Jesús Barba received the M.S. and Ph.D. degrees in
computer engineering diploma from the University of
Castilla-La Mancha (UCLM), Ciudad Real, Spain, in
2001 and 2008, respectively.

He has been an Associate Professor with the De-
partment of Information and Systems Technology
(TSI) since 2001 and a member of the ARCO re-
search group, located at the School of Computer Sci-
ence, UCLM, Spain. Among the open research lines
and interests, it is worth mentioning the following:
low-cost and low-power reconfigurable systems for

ubiquitous computing, reconfigurable computing platforms for AI algorithms,
heterogeneous distributed embedded computing, and high-level synthesis tools.

Fernando Rincón (Member, IEEE) received the de-
gree in computer science from the Autonomous Uni-
versity of Barcelona, Barcelona, Spain, in 1993, and
the Ph.D. degree from the University of Castilla-La
Mancha, Ciudad Real, Spain in 2003.

He is currently an Assistant Professor with TSI
Department, University of Castilla-La Mancha. His
research interests include system-on-chip integration,
HW runtime reconfiguration, and heterogeneous dis-
tributed systems.

Sebastián López (Member, IEEE) was born in Las
Palmas de Gran Canaria, Spain, in 1978. He received
the Electronic Engineering degree from the Univer-
sity of La Laguna, San Cristobal de La Laguna,
Spain, in 2001, and the Ph.D. degree in electronic
engineering from the University of Las Palmas de
Gran Canaria, Las Palmas de Gran Canaria, Spain, in
2006.

He is currently an Associate Professor with the
University of Las Palmas de Gran Canaria, where he
is involved in research activities with Integrated Sys-

tems Design Division, Institute for Applied Microelectronics. He has coauthored
more than 120 articles in international journals and conferences. His research
interests include real-time hyperspectral imaging, reconfigurable architectures,
high-performance computing systems, and image and video processing and
compression.

Dr. López was a recipient of regional and national awards during his electronic
engineering degree. He also serves as an Active Reviewer for different JCR jour-
nals and as a Program Committee Member of a variety of reputed international
conferences. Furthermore, he acted as one of the program chairs of the IEEE
Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote
Sensing in its 2014 edition and of the SPIE Conference of High-Performance
Computing in Remote Sensing, from 2015 to 2018. He is also an Associate Editor
for the IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS

AND REMOTE SENSING, MDPI Remote Sensing, and Mathematical Problems in
Engineering Journal. He was an Associate Editor for the IEEE TRANSACTIONS

ON CONSUMER ELECTRONICS, from 2008 to 2013. Moreover, he has been the
Guest Editor of different special issues in JCR journals related to his research
interests.

Juan Carlos López (Member, IEEE) received the
M.S. and Ph.D. degrees in telecommunication (elec-
trical) engineering from the Technical University of
Madrid, Madrid, Spain, in 1985 and 1989, respec-
tively.

From 1989 to 1999, he was an Associate Professor
with the Department of Electrical Engineering, Tech-
nical University of Madrid. From September 1990
to August 1992, he was a Visiting Scientist with the
Department of Electrical and Computer Engineering,
Carnegie Mellon University, Pittsburgh, PA, USA.

From 2000 to 2008, he was the Dean of the School of Computer Science,
University of Castilla-La Mancha. He is currently a Professor of computer
architecture with the University of Castilla-La Mancha, Ciudad Real, Spain.
His research interests include embedded system design, distributed computing,
and advanced communication services.

Dr. Lopez is a member of the IEEE and ACM. He is and has been a member
of different panels of the Spanish National Science Foundation and the Spanish
Ministry of Education and Science, regarding the information technologies
research programs.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

