Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/132578
DC FieldValueLanguage
dc.contributor.authorCaba, Julianen_US
dc.contributor.authorStroobandt, Dirken_US
dc.contributor.authorDiaz, Mariaen_US
dc.contributor.authorBarba, Jesusen_US
dc.contributor.authorRincon, Fernandoen_US
dc.contributor.authorLopez, Sebastiánen_US
dc.contributor.authorGarijo López,Juan Carlosen_US
dc.date.accessioned2024-07-29T07:58:17Z-
dc.date.available2024-07-29T07:58:17Z-
dc.date.issued2023en_US
dc.identifier.issn1939-1404en_US
dc.identifier.urihttp://hdl.handle.net/10553/132578-
dc.description.abstractLossy compression solutions have grown up during the past decades because of the increment of the data rate in the new-generation hyperspectral sensors; however, linear compression techniques include useless information on regions of little interest for the final application and, at the same time, scarce information on areas of interest. In this article, a transform-based lossy compressor, HyperLCA, has been extended to include a runtime adaptive distortion feature that brings multiple compression ratios in the same scenario. The solution has been designed to keep the same hardware-friendly feature, just as its previous version, specifically conceived to ease the deployment of the solution on reconfigurable hardware devices (FPGAs). The experiments demonstrate that the new version of the compressor is able to process 1024 × 1024 hyperspectral images and 180 spectral bands (377.5 MB) in 0.935 s with a power consumption of 1.145 W. In addition, experimental results also reveal that our architecture features high throughput (MSamples/s) and remarkable energy-efficiency (MB/s/W) tradeoffs, 10× and 6× greater than the best state-of-the-art solution, respectively.en_US
dc.languageengen_US
dc.relation.ispartofIEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensingen_US
dc.subject33 Ciencias tecnológicasen_US
dc.subject.otherAdaptive computingen_US
dc.subject.otherfield-programmable gate array (FPGA)en_US
dc.subject.otherhyperspectral imagingen_US
dc.subject.otherlossy compressionen_US
dc.subject.otheron-board processingen_US
dc.titleFPGA-Based Hyperspectral Lossy Compressor With Adaptive Distortion Feature for Unexpected Scenariosen_US
dc.typeArticleen_US
dc.identifier.doi10.1109/JSTARS.2023.3298484en_US
dc.identifier.scopus2-s2.0-85165917718-
dc.contributor.orcid0000-0002-7641-4643-
dc.contributor.orcid0000-0002-4477-5313-
dc.contributor.orcid0000-0003-2670-8149-
dc.contributor.orcid0000-0003-1931-3245-
dc.contributor.orcid0000-0003-4688-8650-
dc.contributor.orcid0000-0002-2360-6721-
dc.contributor.orcid0000-0002-7372-1568-
dc.investigacionIngeniería y Arquitecturaen_US
dc.utils.revisionen_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-TELen_US
dc.description.sjr1,434
dc.description.jcr5,5
dc.description.sjrqQ1
dc.description.jcrqQ1
dc.description.scieSCIE
dc.description.miaricds10,6
item.grantfulltextopen-
item.fulltextCon texto completo-
crisitem.author.deptGIR IUMA: Diseño de Sistemas Electrónicos Integrados para el procesamiento de datos-
crisitem.author.deptIU de Microelectrónica Aplicada-
crisitem.author.deptDepartamento de Ingeniería Electrónica y Automática-
crisitem.author.orcid0000-0002-2360-6721-
crisitem.author.parentorgIU de Microelectrónica Aplicada-
crisitem.author.fullNameLópez Suárez, Sebastián Miguel-
crisitem.author.fullNameGarijo López,Juan Carlos-
Appears in Collections:Artículos
Adobe PDF (4,09 MB)
Show simple item record

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.