Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/129246
Título: | Characterization of Partial Discharges in Dielectric Oils Using High-Resolution CMOS Image Sensor and Convolutional Neural Networks | Autores/as: | Monzón-Verona, José Miguel González Domínguez, Pablo García-Alonso, Santiago |
Clasificación UNESCO: | 3307 Tecnología electrónica | Palabras clave: | Cmos Image Sensor Convolutional Neural Network Deep Learning Mineral Oils Non-Destructive Diagnosis, et al. |
Fecha de publicación: | 2024 | Publicación seriada: | Sensors (Switzerland) | Resumen: | In this work, an exhaustive analysis of the partial discharges that originate in the bubbles present in dielectric mineral oils is carried out. To achieve this, a low-cost, high-resolution CMOS image sensor is used. Partial discharge measurements using that image sensor are validated by a standard electrical detection system that uses a discharge capacitor. In order to accurately identify the images corresponding to partial discharges, a convolutional neural network is trained using a large set of images captured by the image sensor. An image classification model is also developed using deep learning with a convolutional network based on a TensorFlow and Keras model. The classification results of the experiments show that the accuracy achieved by our model is around 95% on the validation set and 82% on the test set. As a result of this work, a non-destructive diagnosis method has been developed that is based on the use of an image sensor and the design of a convolutional neural network. This approach allows us to obtain information about the state of mineral oils before breakdown occurs, providing a valuable tool for the evaluation and maintenance of these dielectric oils. | URI: | http://hdl.handle.net/10553/129246 | ISSN: | 1424-8220 | DOI: | 10.3390/s24041317 | Fuente: | Sensors[ISSN 1424-8220],v. 24 (4), (Febrero 2024) |
Colección: | Artículos |
Citas SCOPUSTM
3
actualizado el 15-dic-2024
Citas de WEB OF SCIENCETM
Citations
3
actualizado el 15-dic-2024
Visitas
47
actualizado el 29-jun-2024
Descargas
23
actualizado el 29-jun-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.