Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/129246
Título: Characterization of Partial Discharges in Dielectric Oils Using High-Resolution CMOS Image Sensor and Convolutional Neural Networks
Autores/as: Monzón-Verona, José Miguel 
González Domínguez, Pablo 
García-Alonso, Santiago 
Clasificación UNESCO: 3307 Tecnología electrónica
Palabras clave: Cmos Image Sensor
Convolutional Neural Network
Deep Learning
Mineral Oils
Non-Destructive Diagnosis, et al.
Fecha de publicación: 2024
Publicación seriada: Sensors (Switzerland) 
Resumen: In this work, an exhaustive analysis of the partial discharges that originate in the bubbles present in dielectric mineral oils is carried out. To achieve this, a low-cost, high-resolution CMOS image sensor is used. Partial discharge measurements using that image sensor are validated by a standard electrical detection system that uses a discharge capacitor. In order to accurately identify the images corresponding to partial discharges, a convolutional neural network is trained using a large set of images captured by the image sensor. An image classification model is also developed using deep learning with a convolutional network based on a TensorFlow and Keras model. The classification results of the experiments show that the accuracy achieved by our model is around 95% on the validation set and 82% on the test set. As a result of this work, a non-destructive diagnosis method has been developed that is based on the use of an image sensor and the design of a convolutional neural network. This approach allows us to obtain information about the state of mineral oils before breakdown occurs, providing a valuable tool for the evaluation and maintenance of these dielectric oils.
URI: http://hdl.handle.net/10553/129246
ISSN: 1424-8220
DOI: 10.3390/s24041317
Fuente: Sensors[ISSN 1424-8220],v. 24 (4), (Febrero 2024)
Colección:Artículos
Adobe PDF (29 MB)
Vista completa

Citas SCOPUSTM   

3
actualizado el 15-dic-2024

Citas de WEB OF SCIENCETM
Citations

3
actualizado el 15-dic-2024

Visitas

47
actualizado el 29-jun-2024

Descargas

23
actualizado el 29-jun-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.