Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/129246
Campo DC | Valor | idioma |
---|---|---|
dc.contributor.author | Monzón-Verona, José Miguel | - |
dc.contributor.author | González Domínguez, Pablo | - |
dc.contributor.author | García-Alonso, Santiago | - |
dc.date.accessioned | 2024-03-07T09:25:46Z | - |
dc.date.available | 2024-03-07T09:25:46Z | - |
dc.date.issued | 2024 | - |
dc.identifier.issn | 1424-8220 | - |
dc.identifier.other | Scopus | - |
dc.identifier.uri | http://hdl.handle.net/10553/129246 | - |
dc.description.abstract | In this work, an exhaustive analysis of the partial discharges that originate in the bubbles present in dielectric mineral oils is carried out. To achieve this, a low-cost, high-resolution CMOS image sensor is used. Partial discharge measurements using that image sensor are validated by a standard electrical detection system that uses a discharge capacitor. In order to accurately identify the images corresponding to partial discharges, a convolutional neural network is trained using a large set of images captured by the image sensor. An image classification model is also developed using deep learning with a convolutional network based on a TensorFlow and Keras model. The classification results of the experiments show that the accuracy achieved by our model is around 95% on the validation set and 82% on the test set. As a result of this work, a non-destructive diagnosis method has been developed that is based on the use of an image sensor and the design of a convolutional neural network. This approach allows us to obtain information about the state of mineral oils before breakdown occurs, providing a valuable tool for the evaluation and maintenance of these dielectric oils. | - |
dc.language | eng | - |
dc.relation.ispartof | Sensors (Switzerland) | - |
dc.source | Sensors[ISSN 1424-8220],v. 24 (4), (Febrero 2024) | - |
dc.subject | 3307 Tecnología electrónica | - |
dc.subject.other | Cmos Image Sensor | - |
dc.subject.other | Convolutional Neural Network | - |
dc.subject.other | Deep Learning | - |
dc.subject.other | Mineral Oils | - |
dc.subject.other | Non-Destructive Diagnosis | - |
dc.subject.other | Partial Discharges | - |
dc.title | Characterization of Partial Discharges in Dielectric Oils Using High-Resolution CMOS Image Sensor and Convolutional Neural Networks | - |
dc.type | info:eu-repo/semantics/Article | - |
dc.type | Article | - |
dc.identifier.doi | 10.3390/s24041317 | - |
dc.identifier.scopus | 85185540865 | - |
dc.identifier.isi | 001172194600001 | - |
dc.contributor.orcid | NO DATA | - |
dc.contributor.orcid | NO DATA | - |
dc.contributor.orcid | NO DATA | - |
dc.contributor.authorscopusid | 26531597500 | - |
dc.contributor.authorscopusid | 57203973366 | - |
dc.contributor.authorscopusid | 35106946100 | - |
dc.identifier.eissn | 1424-8220 | - |
dc.identifier.issue | 4 | - |
dc.relation.volume | 24 | - |
dc.investigacion | Ingeniería y Arquitectura | - |
dc.type2 | Artículo | - |
dc.contributor.daisngid | 26020084 | - |
dc.contributor.daisngid | 44365002 | - |
dc.contributor.daisngid | 55756570 | - |
dc.description.numberofpages | 35 | - |
dc.utils.revision | Sí | - |
dc.contributor.wosstandard | WOS:Monzón-Verona, JM | - |
dc.contributor.wosstandard | WOS:González-Domínguez, P | - |
dc.contributor.wosstandard | WOS:García-Alonso, S | - |
dc.date.coverdate | Febrero 2024 | - |
dc.identifier.ulpgc | Sí | - |
dc.contributor.buulpgc | BU-TEL | - |
dc.description.sjr | 0,786 | - |
dc.description.jcr | 3,847 | - |
dc.description.sjrq | Q1 | - |
dc.description.jcrq | Q1 | - |
dc.description.scie | SCIE | - |
dc.description.miaricds | 10,8 | - |
item.grantfulltext | open | - |
item.fulltext | Con texto completo | - |
crisitem.author.dept | GIR IUMA: Instrumentación avanzada | - |
crisitem.author.dept | IU de Microelectrónica Aplicada | - |
crisitem.author.dept | Departamento de Ingeniería Eléctrica | - |
crisitem.author.dept | GIR IUMA: Instrumentación avanzada | - |
crisitem.author.dept | IU de Microelectrónica Aplicada | - |
crisitem.author.dept | Departamento de Ingeniería Eléctrica | - |
crisitem.author.dept | GIR IUMA: Instrumentación avanzada | - |
crisitem.author.dept | IU de Microelectrónica Aplicada | - |
crisitem.author.dept | Departamento de Ingeniería Electrónica y Automática | - |
crisitem.author.orcid | 0000-0001-9694-269X | - |
crisitem.author.orcid | 0000-0003-4389-0632 | - |
crisitem.author.parentorg | IU de Microelectrónica Aplicada | - |
crisitem.author.parentorg | IU de Microelectrónica Aplicada | - |
crisitem.author.parentorg | IU de Microelectrónica Aplicada | - |
crisitem.author.fullName | Monzón Verona, José Miguel | - |
crisitem.author.fullName | González Domínguez, Pablo | - |
crisitem.author.fullName | Garcia-Alonso Montoya, Santiago | - |
Colección: | Artículos |
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.