Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/129246
Title: Characterization of Partial Discharges in Dielectric Oils Using High-Resolution CMOS Image Sensor and Convolutional Neural Networks
Authors: Monzón-Verona, José Miguel 
González Domínguez, Pablo 
García-Alonso, Santiago 
UNESCO Clasification: 3307 Tecnología electrónica
Keywords: Cmos Image Sensor
Convolutional Neural Network
Deep Learning
Mineral Oils
Non-Destructive Diagnosis, et al
Issue Date: 2024
Journal: Sensors (Switzerland) 
Abstract: In this work, an exhaustive analysis of the partial discharges that originate in the bubbles present in dielectric mineral oils is carried out. To achieve this, a low-cost, high-resolution CMOS image sensor is used. Partial discharge measurements using that image sensor are validated by a standard electrical detection system that uses a discharge capacitor. In order to accurately identify the images corresponding to partial discharges, a convolutional neural network is trained using a large set of images captured by the image sensor. An image classification model is also developed using deep learning with a convolutional network based on a TensorFlow and Keras model. The classification results of the experiments show that the accuracy achieved by our model is around 95% on the validation set and 82% on the test set. As a result of this work, a non-destructive diagnosis method has been developed that is based on the use of an image sensor and the design of a convolutional neural network. This approach allows us to obtain information about the state of mineral oils before breakdown occurs, providing a valuable tool for the evaluation and maintenance of these dielectric oils.
URI: http://hdl.handle.net/10553/129246
ISSN: 1424-8220
DOI: 10.3390/s24041317
Source: Sensors[ISSN 1424-8220],v. 24 (4), (Febrero 2024)
Appears in Collections:Artículos
Adobe PDF (29 MB)
Show full item record

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.