Identificador persistente para citar o vincular este elemento: https://accedacris.ulpgc.es/handle/10553/128846
Campo DC Valoridioma
dc.contributor.authorMedina, Juan Manuelen_US
dc.contributor.authorSánchez Pérez, Javieren_US
dc.date.accessioned2024-02-08T15:40:42Z-
dc.date.available2024-02-08T15:40:42Z-
dc.date.issued2023en_US
dc.identifier.isbn978-84-09-48561-1en_US
dc.identifier.issn2938-5350en_US
dc.identifier.urihttps://accedacris.ulpgc.es/handle/10553/128846-
dc.description.abstractThe automatic detection of brain tumors is important for efficiently processing large amounts of data. This is a complex task due to the great variety that exists, and the inherent challenges associated with processing medical images. The aim of this work is to assess the performance of recent neural networks for the classification of brain tumors. We study the EfficientNet model, which has provided good results in many classification problems. We use two standard datasets with more than 3000 magnetic resonance images each. The classification includes four different classes with three tumor types (glioma, meningioma, pituitary tumors), and an additional class for brains without tumors. The experiments analyze three models of the EfficientNet architecture, using several techniques, such as transfer learning, early stopping and fine-tuning. The results show that the models attain an accuracy of 98.4% and 97.5% with the two datasets, which is on par with state-of-the-art methods.en_US
dc.languageengen_US
dc.publisherInternational Frequency Sensor Association (IFSA) Publishing, S. L.en_US
dc.relationF2022/03en_US
dc.sourceAdvances in Signal Processing and Artificial Intelligence. Proceedings of the 5th International Conference on Advances in Signal Processing and Artificial Intelligence (ASPAI' 2023), p. 151-156. 7-9 June 2023, Tenerifeen_US
dc.subject120304 Inteligencia artificialen_US
dc.subject.otherBrain tumor classificationen_US
dc.subject.otherMagnetic resonance imaging (MRI)en_US
dc.subject.otherDeep learningen_US
dc.subject.otherConvolutional neural network (CNN)en_US
dc.titleHigh accuracy brain tumor classification with EfficientNet and magnetic resonance imagesen_US
dc.typeinfo:eu-repo/semantics/conferenceobjecten_US
dc.typeConferenceObjecten_US
dc.relation.conference5th International Conference on Advances in Signal Processing and Artificial Intelligence (ASPAI 2023)en_US
dc.identifier.doi10.13140/RG.2.2.27945.77924en_US
dc.description.lastpage156en_US
dc.description.firstpage151en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Actas de congresosen_US
dc.description.numberofpages6en_US
dc.utils.revisionen_US
dc.date.coverdateJunio 2023en_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-INFen_US
item.fulltextCon texto completo-
item.grantfulltextopen-
crisitem.author.deptGIR IUCES: Centro de Tecnologías de la Imagen-
crisitem.author.deptIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.deptDepartamento de Informática y Sistemas-
crisitem.author.orcid0000-0001-8514-4350-
crisitem.author.parentorgIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.fullNameSánchez Pérez, Javier-
crisitem.event.eventsstartdate07-06-2023-
crisitem.event.eventsenddate09-06-2023-
Colección:Actas de congresos
Publicación
Adobe PDF (736,89 kB)
Póster
Adobe PDF (1,51 MB)
Vista resumida

Visitas

158
actualizado el 16-nov-2024

Descargas

161
actualizado el 16-nov-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.