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Summary: The automatic detection of brain tumors is important for efficiently processing large amounts of data. This is a 
complex task due to the great variety that exists, and the inherent challenges associated with processing medical images. The 
aim of this work is to assess the performance of recent neural networks for the classification of brain tumors. We study the 
EfficientNet model, which has provided good results in many classification problems. We use two standard datasets with more 
than 3000 magnetic resonance images each. The classification includes four different classes with three tumor types (glioma, 
meningioma, pituitary tumors), and an additional class for brains without tumors. The experiments analyze three models of 
the EfficientNet architecture, using several techniques, such as transfer learning, early stopping and fine-tuning. The results 
show that the models attain an accuracy of 98.4 % and 97.5 % with the two datasets, which is on par with state-of-the-art 
methods. 
 
Keywords: Brain tumor classification, Magnetic resonance imaging (MRI), Deep learning, Convolutional neural  
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1. Introduction 

 
During the last years, many works have explored 

the application of deep neural networks for the 
classification of brain tumors. This is an intricate task 
due to the difficulty in the diagnosis of several types of 
tumors and the implications for the health of patients. 
Consequently, the quest for a neural network capable 
of delivering exceptional accuracy in tumor detection 
holds paramount importance for effective patient 
treatment. 

Many works have obtained promising results with 
standard architectures, such as ResNet [13], Xception 
[11] or Vision Transformers [24], and a few works 
have compared the performance of multiple neural 
networks, like in [17-19]. 

The study presented in [18] showed that 
EfficientNet [23] provided good performance among 
many different models, with one of the best trade-offs 
between accuracy and model complexity. However, 
the authors did not search for the best  
hyper-parameters, using a general setting for  
all the models. 

In this work, we are interested in deepening in the 
capabilities of this neural network. The aim is to 
analyze several techniques, such as transfer learning, 
fine tuning, or early stopping, and find the best 
configuration. We use two datasets of more than  
3000 magnetic resonance images each. The first one, 
from Figshare [7], contains 3064 images with three 
types of tumors, whereas the second one, from Kaggle 
[4], has 3264 images with an additional label for 
images without tumors. 

The experiments analyze the behavior of different 
models of the EfficientNet family, obtaining an 

accuracy of 98.4 % with the Figshare dataset and  
97.5 % with the Kaggle dataset. In particular, we study 
three models with a high disparity in the number of 
parameters, so we may understand the behavior with 
respect to the size of the network. The use of transfer 
learning is important for attaining high levels of 
accuracy and fine-tuning is key for further improving 
the results. Comparing with state-of-the-art methods, 
our results rank in the top of the classification for  
both datasets. 

Section 2 discusses the main works in the literature 
based on neural networks. Section 3 details the datasets 
that we use in our study, then it summarizes the main 
characteristics of the EfficientNet model and details 
the experimental setup. Section 3 analyzes the 
experimental results and compares with state-of-the-
art methods. Some concluding remarks are given  
in Section 4. 

 
 

2. Related Work 
 
Over the past few years, many methods have 

addressed the problem of brain tumor classification 
with neural networks and a few studies have compared 
the performance of several convolutional neural 
networks (CNNs) for this task. For example, in [19], 
the authors trained five models (Xception, ResNet50, 
InceptionV3, VGG16, and MobileNet), achieving 
accuracies of 98.75 %, 98.50 %, 98.00 %, 97.50 %, and 
97.25 %, respectively. However, this preliminary work 
lacks sufficient details to reproduce the results and it is 
not clear which dataset was used in the experiments. 

The authors of the work presented in [17] 
investigated the performance of the VGG16, VGG19, 
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ResNet50, and DenseNet121 models using the 
Figshare dataset, relying on transfer learning and 
adding three fully connected layers on top of the neural 
networks. They compared results using several 
optimization methods (Adam, Adadelta, RMSprop, 
and SGD), and obtained the best results with ResNet50 
and DenseNet121, with an accuracy of 99.0 % and  
98.9 %, respectively. 

Nevertheless, these works are not directly 
comparable due to the use of different datasets. The 
work presented in [18] analyzes most of these CNNs 
and includes EfficientNet and the recent ConvNext, 
using the two datasets. They explored different 
versions of each family and provided sufficient details 
for reproducibility. They also obtained good 
performance for these models and draw some 
interesting conclusions. The EfficientNet model 
presented the best trade-off between accuracy and 
complexity, being one  of the best candidates for  
this problem. 

Many other articles have studied the behavior of 
other models, like in [25], where the authors showed 
the superiority of GoogLeNet [21] over AlexNet [12] 
using transfer learning. 

The EfficientNet architecture has also been 
previously used in [10] and [14]. The first work was 
based on the EfficientNetB0 model and obtained an 
accuracy of 96.9 % using the Kaggle dataset. In this 
study, we obtain better results with both 
EfficientNetB0 and EfficientNetB3. For the work 
presented in [14], it is not clear which dataset was used. 

A study on ResNet50 [13] provided results with an 
accuracy of 97.5 % using the Figshare dataset. They 
obtained better results without data augmentation, 
which is in line with the results obtained in [18]. 

More recently, in [11], the authors analyze several 
networks and propose an ensemble of three models 
based on VGG16, InceptionV3, and Xception, 
obtaining an accuracy of 96.9 % with the Kaggle 
dataset. The authors also studied three different Vision 
Transformers, but they did not obtain good results. In 
our work, we obtain higher accuracy with a single 
model. Although the accuracy of these methods is 
typically above 95 %, it is not easy to compare the 
results because they use different datasets and 
configurations. 
 
 
3. Material and Methods 
 
3.1. Datasets 
 

In this work, we use two MRI datasets for brain 
tumor classification. The first one is available on 
Figshare [7] and was initially proposed in [6]. It is one 
of the first datasets for this purpose and many works 
have used it for evaluating their methods. It contains 
3064 images with the three tumor types: 1426 images 
of gliomas, 708 images of meningiomas, and  
930 images of pituitary tumors. In this case, there are 
no images of healthy brains, thus there is not any label 

for the no tumor class. The information is stored in 
MATLAB format in a data structure that contains the 
image, the label, a unique identifier, and the 
segmentation of the tumor region, including a mask 
and a polygon of the tumor contour. We converted the 
images into PNG format and split the images into the 
training and testing directories, with three 
subdirectories corresponding to the three tumor types. 

The Kaggle dataset [4] contains images with the 
same types of tumors and an additional classification 
for images without tumors. It contains 3264 images, 
with 926 gliomas, 937 meningiomas, 901 pituitary 
tumors, and 500 without tumors. In this case, the 
dataset is organized in two directories (training and 
testing) and four subdirectories corresponding to each 
label. In a preprocessing step, we unified the size of the 
images to 512×512 by scaling and centering the 
original images. This dataset contains more variety 
than the previous one, because it was created by 
collecting images from other sources. For instance, it 
includes more than 2000 images from the Figshare 
dataset (as reported in [18]), as well as images from 
other datasets. Fig. 1 depicts some slices of this dataset 
from different views. 

 
 

3.2. The EfficientNet Neural Network 
 
EfficientNet [22] is a recent CNN that maintains a 

trade-off between accuracy and FLOPS by performing 
a compound scaling of the depth and width of the 
network. It also adapts the resolution of the input 
images for this purpose. This family of networks 
defines eight different models, from B0 to B7, with 
increasing sizes in width, depth, and image resolution. 
This network relies on the Mnasnet architecture, which 
uses inverted bottlenecks, and squeeze-and-excitation 
optimization. 

In our study, we analyze the second version of this 
family [23], which introduces several improvements 
over the previous version. The main differences are the 
introduction of progressive learning, so that the size of 
the images and strength of regularization is gradually 
increased during training; the replacement of 
depthwise convolutions in the first layers to increase 
the speed; and the scaling of the network starting from 
later stages. 

We report the results for the B0, the B3, and the 
Small configurations. The number of parameters is 
significantly smaller than in other neural networks 
with similar performance. The accuracy that we obtain 
with the models of this version is consistently higher 
than with the models of the first one. 

For transfer learning, we remove the top layer and 
include a dense layer with the number of classes (three 
for the Figshare dataset and four for the Kaggle 
dataset) and SoftMax activation. Before the dense 
layer, we include dropout. In our experiments, we 
obtained slightly better results with a dropout rate of 
70 % in comparison with 50 % and 30 %, therefore, we 
selected 70 % by default. 
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Fig. 1. Images of brain tumors from the Kaggle dataset: the first image on the left is an axial view of the brain with a glioma; 

the second image on the left is a coronal view with a meningioma; the third one is a sagittal view with a pituitary tumor;  
and the image on the right is a brain without tumor. 

 
 
3.3. Experiments Setting 

 
We use the TensorFlow and Keras libraries for 

the training of the neural networks, and the  
scikit-learn library to evaluate the models. The 
images are scaled down to 256×256 pixels with three 
channels. The range of the original pixel values is 
between 0 and 255, and we normalized the images 
between -1 and 1, dividing by 127.5 and subtracting 1. 
The experiments were conducted on an Intel Core  
i9-10940X CPU @3.30 GHz processor with 32 GB 
RAM, an NVIDIA GeForce RTX 2060 GPU with  
8 GB RAM and an NVIDIA Geforce RTX 3060 GPU 
with 12 GB RAM, under Windows 10. 

The models were trained using transfer learning 
with the weights corresponding to the ImageNet [8] 
dataset. We used the Adam optimizer with default 
parameters and early stopping with a patience 
parameter of 10. The maximum number of epochs was 
stablished to 50, although most executions finished 
before 25 epochs. For fine-tuning, we used the Adam 
optimizer with a learning rate of 10-4, a decay rate of 
10-5, and 20 epochs. In this case, we unfroze the last  
15 layers, comprising five convolutional layers. 

During the experiments, we used several batch 
sizes, such as 32, 64, and 128, although we did not 
appreciate significant differences in accuracy but more 
stability during the optimization process. 

We use one-hot encoding for coding the labels and 
categorical cross-entropy for the loss function. In the 
numerical results, we use the accuracy, precision, and 
recall metrics for comparing the methods, which are 
given by: 

 

 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 ൌ ்ା்ே

்ାிା்ேାிே
,  

 

 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ൌ ்

்ାி
,  

 

 𝑟𝑒𝑐𝑎𝑙𝑙 ൌ ்

்ାிே
,  

 
with TP the true positive values, TN the true negatives, 
FP the false positives, and FN the false negatives. 
 

4. Results 
 

The results for the Figshare dataset are given in 
Table 1. We observe that the best model is the 
EfficientNetB0, with an accuracy of 98.4 %, and a high 
precision and recall. The second-best method is 
EfficientNetB3, with a slightly inferior performance, 
and the third one is EfficientNetSmall. 

 
 

Table 1. Results for the Figshare dataset. 
 

Method Accuracy Precision Recall 
EfficientNetB0 98.4 % 98.1 % 98.0 % 
EfficientNetB3 98.0 % 97.9 % 97.6 % 
EfficientNetSmall 97.7 % 97.8 % 97.0 % 

 
We observe a similar behavior when we use the 

Kaggle dataset; see Table 2. The accuracy is lower in 
this case for the three models. The best metrics are 
again for the EfficientNetB0 model. The training with 
this dataset is somehow more difficult as it has one 
more classification and image variety. 

 
 

Table 2. Results for the Kaggle dataset. 
 

Method Accuracy Precision Recall 

EfficientNetB0 97.5 % 97.3 % 97.6 % 
EfficientNetB3 96.9 % 97.0 % 96.7 % 
EfficientNetSmall 96.0 % 96.1 % 95.9 % 

 
The number of parameters of the models is 6,2M 

for EfficientNetB0, 13,2M for EfficientNetB3, and 
20,6M for EfficientNetSmall. The accuracy, precision, 
and recall are in general high for the three models. We 
note that the model with the lowest number of 
parameters provided the best accuracy in general. 
Fine-tuning, on the other hand, usually allowed to 
improve the accuracy by more than 2 %. 
 
 

4.1. Precision per Tumor Type 
 
In the following, we analyze the performance of the 

models with respect to each tumor type. In Figs. 2 and 
3, we show the confusion matrices for the best model, 
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i.e., EfficientNetB0, with the Figshare and Kaggle 
datasets, respectively. 

 

 
 

Fig. 2. Confusion matrix of the EfficientNetB0 model using 
the Figshare dataset. 

 
In the case of the Figshare dataset, gliomas and 

pituitary tumors are correctly classified with high 
precision, with only one misclassification out of 146 
for gliomas and two out of 87 for pituitary tumors. 
Meningiomas obtain the worse results with two errors 
out of 68 samples. 

Looking at the confusion matrix corresponding to 
the Kaggle dataset, we observe that EfficientNetB0 
classifies pituitary tumors with an accuracy of 100 %, 
whereas the no tumor class presents the worst results 
with an accuracy of 95 %. The performance for 
gliomas and meningiomas is similar, although we also 
observe that, for other experiments, meningiomas are 
slightly more difficult to classify than gliomas. 

Tables 3 and 4 show the precision of the three 
methods for the three tumor types, the first one 
corresponding to the Figshare dataset and the second 
one to the Kaggle dataset. We observe that the 
precision for the pituitary tumor is the highest in 
general, followed by the glioma class. The no-tumor 
class also has a high classification rate for the Kaggle 
dataset. Meningiomas obtained the worst results  
in general. 

 
 

Table 3. Precision of the methods with respect to each 
tumor type (Figshare dataset). 

 
Method Glioma Meningioma Pituitar 

EfficientNetB0 99.3 % 97.1 % 97.8 % 
EfficientNetB3 97.7 % 95.9 % 100 % 
EfficientNetSm 97.3 % 97.1 % 98.9 % 

 
Table 4. Precision of the methods with respect to each 

tumor type (Kaggle dataset). 
 

Method Glioma Mening. NoTum. Pituit. 
EfficientNetB0 97.0 % 97.1 % 95.1 % 100 % 
EfficientNetB3 97.9 % 94.9 % 98.1 % 96.9 % 
EfficientNetSm 98.9 % 88.5 % 98.1 % 98.9 % 

 
 

Fig. 3. Confusion matrix of the EfficientNetB0 model using 
the Kaggle dataset. 

 
 
4.3. Comparison with State-of-the-art Methods 
 

If we compare the results of the EfficientNet family 
with state-of-the-art methods, the models rank in the 
top of the classification. 

Table 5 shows the best methods in the literature that 
have used the Figshare dataset. EfficientNetB0 ranks 
in the second position, whereas EfficientNetB3 ranks 
in the fourth position. The first work in the ranking 
[19] obtains a high precision with the ResNet model, 
only using transfer learning. We note that ResNet50 
has 23,2M parameters, thus it is much larger than the 
EfficientNetB0 model. They also obtained good 
accuracy with other models, such as DenseNet and 
VGG, which are also much larger than EfficientNetB0. 
They add three fully connected layers on top of the 
network and analyze the performance using several 
optimizers. These models have also been analyzed in 
[18], also with transfer learning, although the results 
are not so accurate. 

The third work [24] utilizes Vision Transformers 
for the classification. They obtain a slightly better 
result with an ensemble of Transformers. 
Nevertheless, they used an image resolution of 
384×384 and the size of these networks is much bigger 
than EfficientNet. 

In the case of the Kaggle dataset in Table 6, we 
observe that the EfficientNetB0 model provides the 
second-best result and EfficientNetB3 ranks in the 
third position. In this case, there are just a few works 
because this dataset is more recent. 

The results presented in the first method [19], with 
an accuracy of 98.8 %, are, however, contradictory 
because it seems that they are using this dataset, but 
the number of images does not coincide, with more 
than 4000 images. On the other hand, it is not clear the 
configuration of the top layers they use after the CNN 
backbone and there are not enough details for 
reproducibility. 
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Table 5. Comparison with state-of-the-art methods  
using the Figshare dataset. 

 
Method Accuracy 

Pashaei et al. [15] 93.7 % 
Ayadi et al. [2] 94.7 % 
Phaye et al. [16] 95.0 % 
Ghassemi et al. [9] 95.6 % 
Shaik et al. [20] 96.5 % 
Badža et al. [3] 96.6 % 
Kumar et al. [13] 97.1 % 
EfficientNetSmall 97.7 % 
Amin et al. [1] 98.0 % 
Bodapati et al. [5] 98.0 % 
EfficientNetB3 98.0 % 
Tummala et al. [24] 98.2 % 
EfficientNetB0 98.4 % 
Polat et al. [17] 99.0 % 

 
 

Table 6. Comparison with state-of-the-art methods  
using the Kaggle dataset. 

 
Method Accuracy 

EfficientNetSmall 96.0 % 
Hossain et al. [11] 96.5 % 
Goutham et al. [10] 96.9 % 
EfficientNetB3 96.9 % 
EfficientNetB0 97.5 % 
Saleh et al. [19] 98.8 % 

 
 
5. Conclusion 
 

This work has shown that EfficientNet can provide 
high accuracy for the classification of brain tumors. 
We selected two of the most important datasets and 
tried to search the best hyperparameters. 

The best results for the two datasets were obtained 
with EfficientNetB0, which has the lowest number of 
parameters (6,2M). The second-best model was 
EfficientNetB3 with 13,2M parameters. This means 
that it is not necessary a neural network with a large 
capacity to deal with these datasets. 

Transfer learning and fine-tuning are important for 
increasing the accuracy of the models. It is interesting 
to note that transfer learning was based on the 
ImageNet dataset, which is composed of natural 
images, very different from MR images. This denotes 
the generalization capacity of CNNs. On the other 
hand, fine-tuning allowed to further increase the 
accuracy by more than 2 %. The results that we have 
obtained in the experiments are on par with  
state-of-the-art methods, with the benefit that the 
EfficientNet models have less parameters. 
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