Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/128846
Título: High accuracy brain tumor classification with EfficientNet and magnetic resonance images
Autores/as: Medina, Juan Manuel
Sánchez Pérez, Javier 
Clasificación UNESCO: 120304 Inteligencia artificial
Palabras clave: Brain tumor classification
Magnetic resonance imaging (MRI)
Deep learning
Convolutional neural network (CNN)
Fecha de publicación: 2023
Editor/a: International Frequency Sensor Association (IFSA) Publishing, S. L.
Proyectos: F2022/03
Conferencia: 5th International Conference on Advances in Signal Processing and Artificial Intelligence (ASPAI 2023) 
Resumen: The automatic detection of brain tumors is important for efficiently processing large amounts of data. This is a complex task due to the great variety that exists, and the inherent challenges associated with processing medical images. The aim of this work is to assess the performance of recent neural networks for the classification of brain tumors. We study the EfficientNet model, which has provided good results in many classification problems. We use two standard datasets with more than 3000 magnetic resonance images each. The classification includes four different classes with three tumor types (glioma, meningioma, pituitary tumors), and an additional class for brains without tumors. The experiments analyze three models of the EfficientNet architecture, using several techniques, such as transfer learning, early stopping and fine-tuning. The results show that the models attain an accuracy of 98.4% and 97.5% with the two datasets, which is on par with state-of-the-art methods.
URI: http://hdl.handle.net/10553/128846
ISBN: 978-84-09-48561-1
ISSN: 2938-5350
DOI: 10.13140/RG.2.2.27945.77924
Fuente: Advances in Signal Processing and Artificial Intelligence. Proceedings of the 5th International Conference on Advances in Signal Processing and Artificial Intelligence (ASPAI' 2023), p. 151-156. 7-9 June 2023, Tenerife
Colección:Actas de congresos
Publicación
Adobe PDF (736,89 kB)
Póster
Adobe PDF (1,51 MB)
Vista completa

Visitas

158
actualizado el 16-nov-2024

Descargas

161
actualizado el 16-nov-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.