Please use this identifier to cite or link to this item:
https://accedacris.ulpgc.es/handle/10553/128846
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Medina, Juan Manuel | en_US |
dc.contributor.author | Sánchez Pérez, Javier | en_US |
dc.date.accessioned | 2024-02-08T15:40:42Z | - |
dc.date.available | 2024-02-08T15:40:42Z | - |
dc.date.issued | 2023 | en_US |
dc.identifier.isbn | 978-84-09-48561-1 | en_US |
dc.identifier.issn | 2938-5350 | en_US |
dc.identifier.uri | https://accedacris.ulpgc.es/handle/10553/128846 | - |
dc.description.abstract | The automatic detection of brain tumors is important for efficiently processing large amounts of data. This is a complex task due to the great variety that exists, and the inherent challenges associated with processing medical images. The aim of this work is to assess the performance of recent neural networks for the classification of brain tumors. We study the EfficientNet model, which has provided good results in many classification problems. We use two standard datasets with more than 3000 magnetic resonance images each. The classification includes four different classes with three tumor types (glioma, meningioma, pituitary tumors), and an additional class for brains without tumors. The experiments analyze three models of the EfficientNet architecture, using several techniques, such as transfer learning, early stopping and fine-tuning. The results show that the models attain an accuracy of 98.4% and 97.5% with the two datasets, which is on par with state-of-the-art methods. | en_US |
dc.language | eng | en_US |
dc.publisher | International Frequency Sensor Association (IFSA) Publishing, S. L. | en_US |
dc.relation | F2022/03 | en_US |
dc.source | Advances in Signal Processing and Artificial Intelligence. Proceedings of the 5th International Conference on Advances in Signal Processing and Artificial Intelligence (ASPAI' 2023), p. 151-156. 7-9 June 2023, Tenerife | en_US |
dc.subject | 120304 Inteligencia artificial | en_US |
dc.subject.other | Brain tumor classification | en_US |
dc.subject.other | Magnetic resonance imaging (MRI) | en_US |
dc.subject.other | Deep learning | en_US |
dc.subject.other | Convolutional neural network (CNN) | en_US |
dc.title | High accuracy brain tumor classification with EfficientNet and magnetic resonance images | en_US |
dc.type | info:eu-repo/semantics/conferenceobject | en_US |
dc.type | ConferenceObject | en_US |
dc.relation.conference | 5th International Conference on Advances in Signal Processing and Artificial Intelligence (ASPAI 2023) | en_US |
dc.identifier.doi | 10.13140/RG.2.2.27945.77924 | en_US |
dc.description.lastpage | 156 | en_US |
dc.description.firstpage | 151 | en_US |
dc.investigacion | Ingeniería y Arquitectura | en_US |
dc.type2 | Actas de congresos | en_US |
dc.description.numberofpages | 6 | en_US |
dc.utils.revision | Sí | en_US |
dc.date.coverdate | Junio 2023 | en_US |
dc.identifier.ulpgc | Sí | en_US |
dc.contributor.buulpgc | BU-INF | en_US |
item.fulltext | Con texto completo | - |
item.grantfulltext | open | - |
crisitem.author.dept | GIR IUCES: Centro de Tecnologías de la Imagen | - |
crisitem.author.dept | IU de Cibernética, Empresa y Sociedad (IUCES) | - |
crisitem.author.dept | Departamento de Informática y Sistemas | - |
crisitem.author.orcid | 0000-0001-8514-4350 | - |
crisitem.author.parentorg | IU de Cibernética, Empresa y Sociedad (IUCES) | - |
crisitem.author.fullName | Sánchez Pérez, Javier | - |
crisitem.event.eventsstartdate | 07-06-2023 | - |
crisitem.event.eventsenddate | 09-06-2023 | - |
Appears in Collections: | Actas de congresos |
Page view(s)
158
checked on Nov 16, 2024
Download(s)
161
checked on Nov 16, 2024
Google ScholarTM
Check
Altmetric
Share
Export metadata
Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.