Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/127883
Título: | Novelty detection in human-machine interaction through a multimodal approach | Autores/as: | Salas Cáceres, José Ignacio Lorenzo Navarro, José Javier Freire Obregón, David Sebastián Castrillón Santana, Modesto Fernando |
Clasificación UNESCO: | 120304 Inteligencia artificial | Palabras clave: | Novelty detection Human-machine interaction Biometrics |
Fecha de publicación: | 2023 | Editor/a: | Springer | Proyectos: | Interaccióny Re-Identificación de Personas Mediante Machine Learning, Deep Learningy Análisis de Datos Multimodal: Hacia Una Comunicación Más Natural en la Robótica Social | Publicación seriada: | Lecture Notes in Computer Science | Conferencia: | 26th Iberoamerican Congress on Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications, CIARP 2023 | Resumen: | As the interest in robots continues to grow across various domains, including healthcare, construction and education, it becomes crucial to prioritize improving user experience and fostering seamless interaction. These human-machine interactions (HMI) are often impersonal. Our proposal, built upon previous work in the field, aims to use biometric data of individuals to detect whether a person has been encountered before. Since many models depend on a threshold set, an optimization method using a genetic algorithm was proposed. The novelty detection is made through a multimodal approach using both voice and facial images from the individuals, although the unimodal approaches of just each single cue were also tested. To assess the effectiveness of the proposed system, we conducted comprehensive experiments on three diverse datasets, namely VoxCeleb, Mobio and AveRobot, each possessing distinct characteristics and complexities. By examining the impact of data quality on model performance, we gained valuable insights into the effectiveness of the proposed solution. Our approach outperformed several conventional novelty detection methods, yielding superior and therefore promising results. | URI: | http://hdl.handle.net/10553/127883 | ISBN: | 978-3-031-49017-0 | ISSN: | 0302-9743 | DOI: | 10.1007/978-3-031-49018-7_33 | Fuente: | Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications. CIARP 2023. Lecture Notes in Computer Science, vol 14469, p. 464–479 (2023) |
Colección: | Actas de congresos |
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.