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Abstract. As the interest in robots continues to grow across various
domains, including healthcare, construction and education, it becomes
crucial to prioritize improving user experience and fostering seamless
interaction. These human-machine interactions (HMI) are often imper-
sonal. Our proposal, built upon previous work in the field, aims to use
biometric data of individuals to detect whether a person has been en-
countered before. Since many models depend on a threshold set, an op-
timization method using a genetic algorithm was proposed. The novelty
detection is made through a multimodal approach using both voice and
facial images from the individuals, although the unimodal approaches
of just each single cue were also tested. To assess the effectiveness of
the proposed system, we conducted comprehensive experiments on three
diverse datasets, namely VoxCeleb, Mobio and AveRobot, each possess-
ing distinct characteristics and complexities. By examining the impact
of data quality on model performance, we gained valuable insights into
the effectiveness of the proposed solution. Our approach outperformed
several conventional novelty detection methods, yielding superior and
therefore promising results.

Keywords: Novelty Detection · Human-Machine Interaction · Biomet-
rics

1 Introduction

The interest in robots continues to rise over the years [19], and this growing
fascination is well-founded. These machines have demonstrated a multitude of
applications in various domains such as healthcare [21], construction [22], among
others. Consequently, there is an increasing number of human-machine interac-
tions (HMI) involving what are known as social robots [24]. Social robots are
specifically designed to interact with humans and typically assist them in dif-
ferent tasks. Enhancing the user experience poses a challenge in creating more
natural and personal interactions in this scenario. It has been observed that
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Table 1: Modified extract from a table obtained from [5]
Task Training Classes Test Classes Objective

Traditional Classifier KKCs KKCs Classify data into one of the
known classes.

Reject Option Classifier KKCs KKCs Classify data and reject samples
with low confidence.

Outlier Detection KKCs and some KUCs samples KKCs and KUCs Detect outliers in the data.
Novelty Detection KKCs KKCs and UUCs Differentiate between UUCs

and KKCs.
Open-Set Classifier KKCs KKCs and UUCs Identify samples belonging to

known classes and categorize
them correctly if they do be-
long.

people respond better to HMI if they are recognized by the robot, only if the
interaction is after a previous encounter. Therefore, this work aims to develop a
HMI model capable of detecting whether a person has been encountered before.
This model would utilize biometric data of the individuals. By doing so, if these
individuals run into the same robot again, the model would allow the robot to
recognize them. To summarize, the goal is to design a novelty detection model
for individuals based on biometrics and with the capability of efficiently and
quickly expanding the database of enrolled identities.

2 Related work

2.1 Terminology

Several terms will be used throughout this work in the context of novelty detec-
tion. First, we introduce the concept of Out of Distribution (OOD) data, which
refers to data encountered during model exploitation that were not present in
the training set. There are two types depending on their relationship with the
original domain: novelties and anomalies. Novelties are related to the working
domain, while anomalies are not. Next, a classification of the different types of
classes based on their appearance in the training set and the knowledge about
them is made, resulting in four categories [5, 14]:

– Known Known Class (KKC): Refers to classes belonging to the known
categories used to train the model.

– Known Unknown Class (KUC): Represent classes belonging to a class
not in the KKCs but represented in the training set.

– Unknown Unknown Class (UUC): Denotes classes that belong to un-
known categories and are not encountered during the training phase.

– Unknown Known Class (UKC): Indicates classes belonging to known
categories but with no specific samples in the training set; instead, only
another type of information is known.

Based on this classification, several tasks arise, presented in Table 1. Among
these tasks, this work focuses on novelty detection. To achieve this, a multimodal
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approach will be employed, combining data to enhance the performance of the
models. Specifically, facial images and voice recordings are going to be used. Due
to the transient nature of the interaction, the amount of data taken from each
person will be limited. As we said before, the database of enrolled persons has to
be able to expand continuously. Therefore, selecting models poses a challenge, as
some methods require a long time to train with the new data. This limitation will
exclude models based on deep learning and neural networks with high training
computational demands.

2.2 Existing modeling architectures

In the literature, multiple models have been proposed to address the task of
novelty detection. Some will be mentioned here, especially those considered the
most suitable for the selected scenario.

First, density-based models are considered, examining the spatial density
across different regions to discern whether a sample is a novelty. Among these
models, Density-Based Spatial Clustering of Applications with Noise (DBSCAN)
[3] stands out as a clustering algorithm that groups samples based on proxim-
ity and classifies those located further of a certain distance as noise or, in our
case, as a novelty. Another noteworthy approach is the Local Outlier Factor
(LOF) [1], which leverages the notion of local density computed via distances to
the K nearest neighbors. Shifting to classifier-based methods, various one-class
classifiers are used in the literature. Below we employ the One-Class Support
Vector Machine (OCSVM) [16]. Like other SVM-based models, this algorithm
aims to maximize the margin between samples of distinct classes by using a hy-
perplane, being the one class of the binary classifier, identities in the dataset,
ergo not novelties. Furthermore, Support Vector Data Description (SVDD) [20]
has a similar principle but employs a hypersphere to enclose the classes instead
of a hyperplane. Additionally, Isolation Forest (IF) [8] is often used in novelty
detection. This algorithm, rooted in decision trees, strives to isolate samples.
The underlying concept is that if a sample is quickly isolated, it is likely to be
an outlier; conversely, if it is challenging to segregate from the rest, it is not an
outlier. Lastly, we consider two models based on probability. Gaussian Mixture
Model (GMM) fits Gaussian distributions to the available data. Alternatively,
Kernel Density Estimation (KDE) [6] estimates the density of a given set of
points by aggregating different kernels, such as Gaussian or exponential distri-
butions. Then, these probability-based models compute a probability of a sample
belonging to the distribution made, setting a threshold is possible to differenti-
ate between regular new samples and OOD data. There are other methods for
novelty detection beyond those mentioned, including those based on reconstruc-
tion or deep learning [15, 25]. It is also important to assert that many algorithms
depend on setting up a threshold, limiting the number of ramifications for IF or
the probability of belonging to a specific distribution like in KDE.
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Fig. 1: Open-set classifier scheme.

3 Methodology

Figure 1 depicts the intended behavior of the proposal. Upon detecting a per-
son, the robot captures his/her voice and face. This raw data then undergoes
a preprocessing stage, being transformed into feature vectors. These vectors are
then fed into trained models to determine if the person is known or unknown.
The human-machine interface (HMI) proceeds uninterrupted if the person is
recognized. However, if the person identity is unknown, the robot updates the
database with the new identity.

As it was mentioned above, in our experiments we did not directly process
the raw audio or image data. Instead, we employed a preprocessing step to con-
vert the samples into fixed-dimensional numerical vectors known as embeddings.
These embeddings were generated using specific neural networks called embed-
ders, which were trained specifically for this task.

– For voice samples, we utilized the X-Vector network [18], which is trained
to discriminate between different speakers. It was designed to convert audio
of variable duration into fixed-dimensional vectors.

– For facial images, we employed the FaceNet network [17], which is trained
to map facial images to a Euclidean space where distances reflect facial simi-
larity. Similar to X-Vector, FaceNet generates fixed-dimensional embeddings.

By employing these dedicated embedders, we were able to transform the
raw voice and facial image data into standardized and informative numerical
representations. The two embedders used in our approach generate vectors of
512 elements each. In the multimodal approach, we concatenate these voice and
face embeddings, resulting in a final feature vector of 1024 dimensions.

For our practical experiments, we selected a subset of those models described
above in the related work section and applied them to our specific scenario. Those
chosen models served as the foundation for our evaluation and analysis.

In our context, a person belonging to a KKC is someone who is already in
the database. One in the UUC represents one that is not, a novelty. There is not
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KUC, however, that would encompass individuals registered in the database as
a unknown.

4 Datasets

As previously mentioned, a multimodal approach will be adopted, requiring au-
diovisual data. Three distinct available audiovisual datasets were utilized, each
with its characteristics and complexities.

First, let us describe AveRobot [9], a dataset specifically created with HMI
in mind. The dataset consists of approximately 10-second videos where different
individuals simulate interactions with a robot. These videos were recorded with
eight different sensors in several indoor locations of a realistic and everyday
environment, precisely the common spaces of a university building. Given those
real life characteristics, the illumination conditions in these locations were not
optimal, resulting in poor image quality, including noise, blurriness, and lighting
issues. The audio quality suffers from a similar condition. The AveRobot dataset
comprises samples from 111 individuals, most falling within 15 to 25 years. This
dataset has been successfully used for multimodal user verification [4]. Another
audiovisual dataset evaluated is VoxCeleb 1 [13], which consists of interviews
with celebrities posted on Youtube. This dataset contains samples from 1251
celebrities from around the world. While the dataset exhibits large diversity,
there is a predominant representation of males and native English speakers.
Furthermore, owing to the data extraction source, the image and audio quality
in VoxCeleb 1 are exceptionally high. Because of this, this dataset may not
entirely represent the data one would encounter when attempting to integrate
a model into a HMI environment. Lastly, the audiovisual dataset Mobio [7] was
studied. This dataset was recorded using two mobile devices: one being a Nokia
N93i mobile phone and the other being a standard 2008 MacBook laptop. The
dataset consists of over 61 hours of audiovisual data with 12 distinct sessions
usually separated by several weeks. In total there are 192 unique audiovideo
samples for each participant. This data was captured at 6 different sites over
one and a half years with people speaking English. In this paper, we used the
training and evaluation partitions, this two subsets have a total of 92 identities.
The distinction in quality between the three datasets can be seen in Figure 2.

5 Experiments

All experiments in our study followed a standardized structure, consisting of the
following steps:

1. Data loading: Prior to conducting the experiments, three subsets of data
were generated for each dataset described in Section 4: training, validation,
and testing. The specific characteristics of each subset can be found in Ta-
ble 2. It should be noted that for the experiments conducted with the Mobio
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(a) AveRobot samples [9]. (b) VoxCeleb samples [13]. (c) Mobio samples [7].

Fig. 2: Example images of the datasets.

Table 2: Characteristics of Data Subsets. Ids stands for identities.
Set # known ids # unknown ids # images per id # audios per id

Train 50 0 50 2
Validation 50 50 30 1

Test 50 50 30 1

dataset, 46 individuals were used per set, and 40 images were used per sam-
ple in the training set. This was due to limitations in the number of identities
available in it.

2. Model training: After loading the data, each evaluated model was trained
using the training set. Hyperparameter tuning was performed using a grid
search with different combinations and leveraging the validation set. In some
cases, we also tested different methods for calculating the threshold. It is
important to note that during the training phase, there were no unknown
samples. For threshold calculation, only elements from the training set, which
all belonged to the Known Known Classes (KKCs), were used.

3. Performance testing: The model’s performance was evaluated using the
test set. Two separate tests were conducted: one to assess the model’s ability
to detect known samples and another to evaluate its capability in detecting
novel samples. The final results were derived from a combination of the
model’s performance in both tests.

It is worth mentioning that for most models, we conducted a small search to
identify the best possible hyperparameters. Furthermore, each model was tested
using each dataset. In the following subsections, we provide a brief overview of
the different experiments conducted in our study.

5.1 Distance-based experiment

The first experiment conducted is a variant of the Nearest Class Mean (NCM)
algorithm [12], a classification algorithm that calculates a centroid for each class,
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and then the distances between each new sample and all the centroids are com-
puted, and the sample is assigned to the class whose have the nearest centroid.
This work has designed a modified version to adapt NCM for novelty detection.

The proposed experiment has k classes, where k is determined by the number
of known individuals in the database at a specific moment. Each class is defined
by ni samples and a centroid X̄i, calculated using the formula 1.

X̄i =
1

ni

ni∑
j=1

Xij (1)

When considering a new sample Xnew, it can either belong to one of the
KKCs or be a novelty. This is determined by a threshold Thri, which can be cal-
culated in various ways, always as a linear combination of some of the distances
presented in the formulas: 2, 3, 4, 5, 6 and 7:

dm =
1

ni

ni∑
j=1

||Xij , X̄i||2 (2)

dM = max
j=1,2,..,ni

||Xij , X̄i||2 (3)

Dm =
1

k

k∑
i=1

(
1

ni

ni∑
j=1

||Xij , X̄i||2) (4)

DM = max
i=1,2,..,k

( max
j=1,2,..,ni

||Xij , X̄i||2) (5)

DmM =
1

k

k∑
i=1

( max
j=1,2,..,ni

||Xij , X̄i||2) (6)

DMm = max
i=1,2,..,k

(
1

ni

ni∑
j=1

||Xij , X̄i||2) (7)

Thri forms a radius around X̄i, as shown in Figure 3. According to expression
8, if the new sample falls within the influence zone of X̄i it will be considered
part of one of the known classes (KKC). If not, it will be considered a novelty
(UUC). {

Xnew ∈ KKC, if ∃i s.t. ||Xnew, X̄i||2 <= Thri

Xnew ̸∈ KKC, if ||Xnew, X̄i||2 > Thri∀i
(8)

This experiment was conducted in five different cases, which differed in the
type of data used, the centroid calculation process, or in the application of an
additional step:

– Unimodal: To have a basis for comparison with the multimodal approach,
the generated feature vectors from voice and images were separately used
for analysis.
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Fig. 3: Visual representation of the explained process for the NCM variant. The
crosses depict the centroids, the diamonds represent the new samples, and the
dots represent the existing samples in the databases. It is observed how the radii
delimit the space that belongs to each class.

– Multimodal: The feature vectors from the unimodal cases were concate-
nated, forming a vector with twice the dimension of the original embeddings.

– Multimodal variants: Two variants were explored. One applies a dimen-
sionality reduction technique, such as PCA, to the concatenated vectors. The
second variant utilized GMM to calculate multiple centroids per class instead
of a single centroid. These centroids corresponded to the mean positions of
the Gaussian distributions that the GMM fitted to the data of each indi-
vidual. Principal Component Analysis (PCA) was applied to achieve a 95%
level of representation, resulting in a reduced dimensionality of 85 elements.

Various strategies for the Thr calculation were tested to find the one that
gives the best results in each case. The different strategies are represented in
Table 3, each σ the result of the formulas 9, 10 and 11.

σd =

√∑ni

j=1(Xij − X̄i)
2

ni − 1
(9)

σm =

√∑k
i=1(dm − d̄m)2

k − 1
(10)

σM =

√∑k
i=1(dM − d̄M )2

k − 1
(11)

The results and the best threshold strategy for each case can be found in
Table 4. The results obtained on the VoxCeleb 1 dataset are visibly better than
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Table 3: Different methods used to calculate the threshold in the experiments
Threshold strategy Equation

T0 Thr = 3 ∗ σd

T1 Thr = dm + 3 ∗ σd

T2 Thr = dM
T3 Thr = dM − 3 ∗ σd

T4 Thr = DM

T5 Thr = DM + 3 ∗ σM

T6 Thr = DM − σM

T7 Thr = DM − 3 ∗ σd

T8 Thr = DmM + 3 ∗ σM

T9 Thr = DmM + 3 ∗ dm
T10 Thr = DMm + σm

T11 Thr = DMm + 3 ∗ σm

Table 4: Results obtained for the three datasets in each one of the cases. High-
lighted values correspond to best results for each set.

AveRobot VoxCeleb 1 Mobio
Experiment F1 Acc. Thr F1 Acc. Thr F1 Acc. Thr

Face 0.8857 0.8953 T3 0.9837 0.9837 T2 0.9725 0.9728 T3

Voice 0.0000 0.5000 T0 0.5915 0.7100 T5 0.9200 0.9130 T5

Multimodal 0.8636 0.8557 T10 0.9977 0.9977 T10 0.9683 0.9674 T6

Multi. PCA 0.8982 0.8967 T5 0.9910 0.9910 T1 0.9831 0.9833 T9

Multi. GMM 0.3931 0.6223 T0 0.9934 0.9933 T5 0.9856 0.9855 T5

those achieved with AveRobot, the same happens with Mobio. This can be at-
tributed to the noise and data conditions, which pose a more significant challenge
for the models in the AveRobot dataset. It is also apparent that the best results
for each dataset are obtained from multimodal approaches. However, it is worth
noting that the unimodal option that uses the subject’s face also yields good
results and that, in Mobio, use the voice alone lead to much better results that
in the other datasets.

5.2 Distribution and density-based experiments

The second experiment involved applying the previously explained KDE (Kernel
Density Estimation) algorithm. The novelty detection in this algorithm is also
based on setting a threshold, in this case, on the score contributed by the model
indicating the likelihood of a sample belonging to the distribution constructed
with the train data. The threshold Thr will be the same for all the samples
and will be calculated so that all training samples are always considered known.
To achieve this, Thr is set at the 0th and 100th percentiles, ensuring that any
new sample obtaining a score outside the original distribution of scores will be
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Table 5: Results obtained using KDE and HDBSCAN for the three datasets.
AveRobot VoxCeleb 1 Mobio

Experiment F1 Acc. F1 Acc. F1 Acc.
KDE 0.5811 0.6333 0.9488 0.9513 0.9528 0.9522

HDBSCAN 0.7004 0.6703 0.9105 0.9167 0.9094 0.9025

considered a novelty. The aforementioned score is calculated as the logarithm of
the estimated density.

The density-based experiment utilizes a variant of the DBSCAN algorithm
called Hierarchical DBSCAN (HDBSCAN) [2]. HDBSCAN applies the original
DBSCAN algorithm with different radius values and integrates the results to
find the most stable clustering [10]. The implementation used [11] can generate
a score representing the probability of a new sample being OOD. This score is
calculated using the GLOSH algorithm, a variant of the mentioned LOF that
compares the density of the space where a sample is located with the density
of the samples associated with it [2]. Similar to KDE, novelty detection sets a
threshold Thr between the 0th and 100th percentiles.

The results obtained using KDE and HDBSCAN can be found in Table 5.
Similar to the previous case, the performance achieved with VoxCeleb 1 and
Mobio are significantly better than those achieved with AveRobot. Its worth
noting that KDE performs better than HDBSCAN in those dataset with better
sample quality (Mobio and VoxCeleb 1) but in AveRobot HDBSCAN is more
effective, this is because HDBSCAN is designed to exhibit more robust behavior
in noisy situations compared to KDE, which is more sensitive to the noise.

5.3 Non threshold-based models

In addition to the threshold-based models mentioned above, we also evaluated
some classification-based models that do not require any adjustment for thresh-
old calculation. They rely on training with the available data. The results can
be seen in Table 6. We can notice that the results are much better in VoxCeleb
1 and Mobio. Additionally, these models do not adapt well to the specific prob-
lem a hand, as in almost all cases, accuracy higher than 60% is not achieved.
An exception to this is seen in the OCSVM though, which achieve an accuracy
above 70% in VoxCeleb 1 and Mobio. Another notable point is the substantial
difference between the F1-Score and accuracy in some cases, such as KNN. This
is due to a high disparity between Recall and Precision, indicating that either the
model classified almost all new samples as known or all samples were considered
novelties.

6 Performance Optimization

In order to improve the performance of models that rely on a threshold value for
determining novelty or known samples, the genetic algorithm (GA) was utilized,
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Table 6: Results using a variety of models in each dataset. Highlighted values
correspond to best results.

AveRobot VoxCeleb 1 Mobio
Model F1 Acc. F1 Acc. F1 Acc.

OCSVM 0.6028 0.4773 0.7540 0.7043 0.7816 0.7435
LOF 0.5135 0.5207 0.2100 0.5587 0.4108 0.6290
IF 0.6633 0.5043 0.6709 0.5053 0.7475 0.6736

SVDD 0.6046 0.5100 0.5798 0.5077 0.6537 0.5540
KNN 0.1550 0.5420 0.1355 0.5363 0.2330 0.5659

which is a bio-inspired heuristic optimization method [23]. A single-objective
approach was adopted, where the accuracy of the models was maximized. To
achieve this, the chromosome was encoded to explore various methods of calcu-
lating the threshold for each case and test previously unexplored combinations
of hyperparameters. The threshold optimization was performed using train and
validation subsets. Once the final performance was obtained, the configuration
that yielded to the best results was tested on the validation set, resulting in the
values presented in Table 8.

6.1 NCM-based algorithm

In this case, the chromosome consisted of six genes [G1, G2, G3, G4, G5, G6], each
limited to vary within the range of -5.0 to 5.0, being always a rational number.
From these genes, Thri was calculated using the expression described in equation
12.

Thi = G1 ∗ dmi +G2 ∗ σd +G3 ∗DmM +G4 ∗ σM +G5 ∗Dm +G6 ∗ σm (12)

6.2 Distribution and density-based approaches

For both models, the chromosome structure follows the same pattern, four gens
[G1, G2, G3, G4] where two are used for hyperparameter exploration and the
other two for Thr calculation. The structure is shown in Table 7. The objective
of this organization is twofold: firstly, to explore different configurations of hy-
perparameters and secondly, to vary the threshold location, all to improve the
performance. The threshold will be calculated as indicated in eq. 13, where L
represents the limits obtained from the G3 percentile and the (100 − G3) per-
centile and σscores is the standard deviation of the scores obtained from the
training set.

Th = LG3
±G4 ∗ σscores (13)

In Table 8, a comparison of the results obtained by applying GA concern-
ing the initial results is presented. Overall, there is an improvement, whether
more or less significant, in the performance. Although all the results may not
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Table 7: Codification of the chromosomes used in the GA for KDE and HDB-
SCAN.

KDE
Gen Hyperparameter Search Space
G1 kernels 0 < G1 < 3. G1 ∈ N
G2 bandwidth 0 < G2 < 1. G2 ∈ R
G3 Percentile 95 < G3 < 100. G3 ∈ N
G4 σscores −5 < G4 < 1. G2 ∈ R

HDBSCAN
Gen Hyperparameter Search Space
G1 min_cluster_size: 10 2 < G1 < 15. G1 ∈ N
G2 min_samples 2 < G2 < 15. G2 ∈ N
G3 Percentile 95 < G3 < 100. G3 ∈ N
G4 σscores −1 < G4 < 5. G2 ∈ R

improve significantly, it is important to note that the thresholds shown in Table
3 were obtained through trial and error, requiring multiple attempts and with
no theoretical base. In contrast, using the GA to calculate these values requires
minimal human intervention. Additionally, in the results of the experiment using
only voice, a significant improvement is observed. This is likely because a good
expression was not found in the trial-and-error process for setting the threshold.
The same applies to the multimodal application of GMM in AveRobot.

7 Conclusions

Various techniques for novelty detection of individuals based on their biomet-
rics have been developed throughout this work. The NCM-based algorithm has
demonstrated the best performance in every dataset, specifically its multimodal
application combining facial image and voice data. Furthermore, due to the high
dimensionality of the problem, applying dimensionality reduction techniques
such as PCA has been shown to decrease complexity without sacrificing per-
formance.

Another essential aspect observed during the study is that threshold-based
models, such as the mentioned implementation of NCM or KDE, are highly
dependent on the proper adjustment of their hyperparameters. Therefore, it is
considered good practice to use optimization methods to explore various com-
binations to find a practical expression. This is particularly important when
considering that the optimal strategy for threshold calculation not only varies
with the nature of the data but also with the dataset employed.

It is worth mentioning that the conditions under which the data is collected
significantly impact the performance. This is evident in the apparent differences
in results between the datasets used. Finally, distance-based or density-based
models have been deemed the best option due to the data limitation and the
desired training agility.
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Table 8: The results obtained by applying the GA. In each of the metrics △
represent the difference with the result achieved in the previous experiment.

AveRobot
Experiment F1-Score △F1-Score Accuracy △Accuracy
NCM. Face 0.889 0.0033 0.8953 0
NCM. Voice 0.6095 0.6095 0.59 0.09

NCM. Multimodal 0.8966 0.033 0.8997 0.044
NCM. Multimodal. PCA 0.9046 0.0064 0.911 0.0143
NCM. Multimodal. GMM 0.8228 0.4297 0.8393 0.217

KDE 0.724 0.1429 0.723 0.0897
HDBSCAN 0.6983 -0.0021 0.6923 0.022

VoxCeleb 1
Experiment F1-Score △F1-Score Accuracy △Accuracy
NCM. Face 0.9891 0.0054 0.989 0.0053
NCM. Voice 0.9184 0.3269 0.92 0.21

NCM. Multimodal 0.9973 -0.0004 0.9973 -0.0004
NCM. Multimodal. PCA 0.997 0.006 0.997 0.006
NCM. Multimodal. GMM 0.9973 0.0039 0.9973 0.004

KDE 0.9902 0.0414 0.9903 0.039
HDBSCAN 0.9065 -0.004 0.912 -0.0047

Mobio
Experiment F1-Score △F1-Score Accuracy △Accuracy
NCM. Face 0.9803 0.0078 0.9804 0.0076
NCM. Voice 0.9247 0.0047 0.9239 0.0109

NCM. Multimodal 0.9942 0.0259 0.9942 0.0268
NCM. Multimodal. PCA 0.9772 -0.0059 0.9772 -0.0061
NCM. Multimodal. GMM 0.9902 0.0046 0.9902 0.0047

KDE 0.988 0.0352 0.988 0.0358
HDBSCAN 0.9273 0.0179 0.925 0.0225

The logical next step following this work is to develop an Open-Set classifier
that can not only successfully perform novelty detection but also classify the
identified samples into their respective KKC. Additionally, despite the emphasis
on agility mentioned earlier, exploring solutions based on deep learning, particu-
larly those that fall under the Few-Shot learning paradigm, which requires only
a small amount of training data, would be interesting.
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