Identificador persistente para citar o vincular este elemento: https://accedacris.ulpgc.es/handle/10553/127883
Campo DC Valoridioma
dc.contributor.authorSalas Cáceres, José Ignacioen_US
dc.contributor.authorLorenzo Navarro, José Javieren_US
dc.contributor.authorFreire Obregón, David Sebastiánen_US
dc.contributor.authorCastrillón Santana, Modesto Fernandoen_US
dc.date.accessioned2023-12-11T16:22:02Z-
dc.date.available2023-12-11T16:22:02Z-
dc.date.issued2023en_US
dc.identifier.isbn978-3-031-49017-0en_US
dc.identifier.issn0302-9743en_US
dc.identifier.otherScopus-
dc.identifier.urihttps://accedacris.ulpgc.es/handle/10553/127883-
dc.description.abstractAs the interest in robots continues to grow across various domains, including healthcare, construction and education, it becomes crucial to prioritize improving user experience and fostering seamless interaction. These human-machine interactions (HMI) are often impersonal. Our proposal, built upon previous work in the field, aims to use biometric data of individuals to detect whether a person has been encountered before. Since many models depend on a threshold set, an optimization method using a genetic algorithm was proposed. The novelty detection is made through a multimodal approach using both voice and facial images from the individuals, although the unimodal approaches of just each single cue were also tested. To assess the effectiveness of the proposed system, we conducted comprehensive experiments on three diverse datasets, namely VoxCeleb, Mobio and AveRobot, each possessing distinct characteristics and complexities. By examining the impact of data quality on model performance, we gained valuable insights into the effectiveness of the proposed solution. Our approach outperformed several conventional novelty detection methods, yielding superior and therefore promising results.-
dc.languageengen_US
dc.publisherSpringeren_US
dc.relationInteraccióny Re-Identificación de Personas Mediante Machine Learning, Deep Learningy Análisis de Datos Multimodal: Hacia Una Comunicación Más Natural en la Robótica Socialen_US
dc.relation.ispartofLecture Notes in Computer Scienceen_US
dc.sourceProgress in Pattern Recognition, Image Analysis, Computer Vision, and Applications. CIARP 2023. Lecture Notes in Computer Science, vol 14469, p. 464–479 (2023)en_US
dc.subject120304 Inteligencia artificial-
dc.subject.otherNovelty detection-
dc.subject.otherHuman-machine interaction-
dc.subject.otherBiometrics-
dc.titleNovelty detection in human-machine interaction through a multimodal approachen_US
dc.typeinfo:eu-repo/semantics/conferenceObjecten_US
dc.typeConferenceObjecten_US
dc.relation.conference26th Iberoamerican Congress on Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications, CIARP 2023en_US
dc.identifier.doi10.1007/978-3-031-49018-7_33en_US
dc.identifier.scopus85178638452-
dc.identifier.isi001148044200033-
dc.contributor.orcid0009-0004-7543-3385-
dc.contributor.orcid0000-0002-2834-2067-
dc.contributor.orcid0000-0003-2378-4277-
dc.contributor.orcid0000-0002-8673-2725-
dc.contributor.authorscopusid58745737800-
dc.contributor.authorscopusid15042453800-
dc.contributor.authorscopusid23396618800-
dc.contributor.authorscopusid57218418238-
dc.identifier.eissn1611-3349-
dc.description.lastpage479en_US
dc.description.firstpage464en_US
dc.relation.volume14469en_US
dc.investigacionIngeniería y Arquitectura-
dc.type2Actas de congresosen_US
dc.contributor.daisngid54794217-
dc.contributor.daisngid1069748-
dc.contributor.daisngid2472434-
dc.contributor.daisngid126841-
dc.description.numberofpages16en_US
dc.identifier.eisbn978-3-031-49018-7-
dc.utils.revision-
dc.contributor.wosstandardWOS:Salas-Cáceres, J-
dc.contributor.wosstandardWOS:Lorenzo-Navarro, J-
dc.contributor.wosstandardWOS:Freire-Obregón, D-
dc.contributor.wosstandardWOS:Castrillón-Santana, M-
dc.date.coverdateNovember 2023en_US
dc.identifier.conferenceidevents150519-
dc.identifier.ulpgc-
dc.contributor.buulpgcBU-INFen_US
dc.description.sjr0,606-
dc.description.sjrqQ2-
dc.description.miaricds10,0-
item.fulltextCon texto completo-
item.grantfulltextopen-
crisitem.author.deptGIR SIANI: Inteligencia Artificial, Robótica y Oceanografía Computacional-
crisitem.author.deptIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.deptGIR SIANI: Inteligencia Artificial, Robótica y Oceanografía Computacional-
crisitem.author.deptIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.deptDepartamento de Informática y Sistemas-
crisitem.author.deptGIR SIANI: Inteligencia Artificial, Robótica y Oceanografía Computacional-
crisitem.author.deptIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.deptDepartamento de Informática y Sistemas-
crisitem.author.deptGIR SIANI: Inteligencia Artificial, Robótica y Oceanografía Computacional-
crisitem.author.deptIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.deptDepartamento de Informática y Sistemas-
crisitem.author.orcid0009-0004-7543-3385-
crisitem.author.orcid0000-0002-2834-2067-
crisitem.author.orcid0000-0003-2378-4277-
crisitem.author.orcid0000-0002-8673-2725-
crisitem.author.parentorgIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.parentorgIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.parentorgIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.parentorgIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.fullNameSalas Cáceres, José Ignacio-
crisitem.author.fullNameLorenzo Navarro, José Javier-
crisitem.author.fullNameFreire Obregón, David Sebastián-
crisitem.author.fullNameCastrillón Santana, Modesto Fernando-
crisitem.project.principalinvestigatorCastrillón Santana, Modesto Fernando-
Colección:Actas de congresos
Adobe PDF (4,08 MB)
Vista resumida

Visitas

49
actualizado el 18-may-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.