Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/127883
Campo DC Valoridioma
dc.contributor.authorSalas Cáceres, José Ignacio-
dc.contributor.authorLorenzo Navarro, José Javier-
dc.contributor.authorFreire Obregón, David Sebastián-
dc.contributor.authorCastrillón Santana, Modesto Fernando-
dc.date.accessioned2023-12-11T16:22:02Z-
dc.date.available2023-12-11T16:22:02Z-
dc.date.issued2023-
dc.identifier.isbn978-3-031-49017-0-
dc.identifier.issn0302-9743-
dc.identifier.otherScopus-
dc.identifier.urihttp://hdl.handle.net/10553/127883-
dc.description.abstractAs the interest in robots continues to grow across various domains, including healthcare, construction and education, it becomes crucial to prioritize improving user experience and fostering seamless interaction. These human-machine interactions (HMI) are often impersonal. Our proposal, built upon previous work in the field, aims to use biometric data of individuals to detect whether a person has been encountered before. Since many models depend on a threshold set, an optimization method using a genetic algorithm was proposed. The novelty detection is made through a multimodal approach using both voice and facial images from the individuals, although the unimodal approaches of just each single cue were also tested. To assess the effectiveness of the proposed system, we conducted comprehensive experiments on three diverse datasets, namely VoxCeleb, Mobio and AveRobot, each possessing distinct characteristics and complexities. By examining the impact of data quality on model performance, we gained valuable insights into the effectiveness of the proposed solution. Our approach outperformed several conventional novelty detection methods, yielding superior and therefore promising results.-
dc.languageeng-
dc.publisherSpringer-
dc.relationInteraccióny Re-Identificación de Personas Mediante Machine Learning, Deep Learningy Análisis de Datos Multimodal: Hacia Una Comunicación Más Natural en la Robótica Social-
dc.relation.ispartofLecture Notes in Computer Science-
dc.sourceProgress in Pattern Recognition, Image Analysis, Computer Vision, and Applications. CIARP 2023. Lecture Notes in Computer Science, vol 14469, p. 464–479 (2023)-
dc.subject120304 Inteligencia artificial-
dc.subject.otherNovelty detection-
dc.subject.otherHuman-machine interaction-
dc.subject.otherBiometrics-
dc.titleNovelty detection in human-machine interaction through a multimodal approach-
dc.typeinfo:eu-repo/semantics/conferenceObject-
dc.typeConferenceObject-
dc.relation.conference26th Iberoamerican Congress on Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications, CIARP 2023-
dc.identifier.doi10.1007/978-3-031-49018-7_33-
dc.identifier.scopus85178638452-
dc.identifier.isi001148044200033-
dc.contributor.orcid0009-0004-7543-3385-
dc.contributor.orcid0000-0002-2834-2067-
dc.contributor.orcid0000-0003-2378-4277-
dc.contributor.orcid0000-0002-8673-2725-
dc.contributor.authorscopusid58745737800-
dc.contributor.authorscopusid15042453800-
dc.contributor.authorscopusid23396618800-
dc.contributor.authorscopusid57218418238-
dc.identifier.eissn1611-3349-
dc.description.lastpage479-
dc.description.firstpage464-
dc.relation.volume14469-
dc.investigacionIngeniería y Arquitectura-
dc.type2Actas de congresos-
dc.contributor.daisngid54794217-
dc.contributor.daisngid1069748-
dc.contributor.daisngid2472434-
dc.contributor.daisngid126841-
dc.description.numberofpages16-
dc.identifier.eisbn978-3-031-49018-7-
dc.utils.revision-
dc.contributor.wosstandardWOS:Salas-Cáceres, J-
dc.contributor.wosstandardWOS:Lorenzo-Navarro, J-
dc.contributor.wosstandardWOS:Freire-Obregón, D-
dc.contributor.wosstandardWOS:Castrillón-Santana, M-
dc.date.coverdateNovember 2023-
dc.identifier.conferenceidevents150519-
dc.identifier.ulpgc-
dc.contributor.buulpgcBU-INF-
dc.description.sjr0,606-
dc.description.sjrqQ2-
dc.description.miaricds10,0-
item.grantfulltextnone-
item.fulltextSin texto completo-
crisitem.project.principalinvestigatorCastrillón Santana, Modesto Fernando-
crisitem.author.deptGIR SIANI: Inteligencia Artificial, Robótica y Oceanografía Computacional-
crisitem.author.deptIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.deptDepartamento de Informática y Sistemas-
crisitem.author.deptGIR SIANI: Inteligencia Artificial, Robótica y Oceanografía Computacional-
crisitem.author.deptIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.deptDepartamento de Informática y Sistemas-
crisitem.author.deptGIR SIANI: Inteligencia Artificial, Robótica y Oceanografía Computacional-
crisitem.author.deptIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.deptDepartamento de Informática y Sistemas-
crisitem.author.orcid0009-0004-7543-3385-
crisitem.author.orcid0000-0002-2834-2067-
crisitem.author.orcid0000-0003-2378-4277-
crisitem.author.orcid0000-0002-8673-2725-
crisitem.author.parentorgIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.parentorgIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.parentorgIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.fullNameSalas Cáceres, José Ignacio-
crisitem.author.fullNameLorenzo Navarro, José Javier-
crisitem.author.fullNameFreire Obregón, David Sebastián-
crisitem.author.fullNameCastrillón Santana, Modesto Fernando-
Colección:Actas de congresos
Vista resumida

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.