Please use this identifier to cite or link to this item:
http://hdl.handle.net/10553/127883
Title: | Novelty detection in human-machine interaction through a multimodal approach | Authors: | Salas Cáceres, José Ignacio Lorenzo Navarro, José Javier Freire Obregón, David Sebastián Castrillón Santana, Modesto Fernando |
UNESCO Clasification: | 120304 Inteligencia artificial | Keywords: | Novelty detection Human-machine interaction Biometrics |
Issue Date: | 2023 | Publisher: | Springer | Project: | Interaccióny Re-Identificación de Personas Mediante Machine Learning, Deep Learningy Análisis de Datos Multimodal: Hacia Una Comunicación Más Natural en la Robótica Social | Journal: | Lecture Notes in Computer Science | Conference: | 26th Iberoamerican Congress on Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications, CIARP 2023 | Abstract: | As the interest in robots continues to grow across various domains, including healthcare, construction and education, it becomes crucial to prioritize improving user experience and fostering seamless interaction. These human-machine interactions (HMI) are often impersonal. Our proposal, built upon previous work in the field, aims to use biometric data of individuals to detect whether a person has been encountered before. Since many models depend on a threshold set, an optimization method using a genetic algorithm was proposed. The novelty detection is made through a multimodal approach using both voice and facial images from the individuals, although the unimodal approaches of just each single cue were also tested. To assess the effectiveness of the proposed system, we conducted comprehensive experiments on three diverse datasets, namely VoxCeleb, Mobio and AveRobot, each possessing distinct characteristics and complexities. By examining the impact of data quality on model performance, we gained valuable insights into the effectiveness of the proposed solution. Our approach outperformed several conventional novelty detection methods, yielding superior and therefore promising results. | URI: | http://hdl.handle.net/10553/127883 | ISBN: | 978-3-031-49017-0 | ISSN: | 0302-9743 | DOI: | 10.1007/978-3-031-49018-7_33 | Source: | Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications. CIARP 2023. Lecture Notes in Computer Science, vol 14469, p. 464–479 (2023) |
Appears in Collections: | Actas de congresos |
Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.