Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/107258
Campo DC | Valor | idioma |
---|---|---|
dc.contributor.author | Castillo Bolado, David | en_US |
dc.contributor.author | Guerra-Artal, Cayetano | en_US |
dc.contributor.author | Hernandez-Tejera, Mario | en_US |
dc.date.accessioned | 2021-05-21T17:32:43Z | - |
dc.date.available | 2021-05-21T17:32:43Z | - |
dc.date.issued | 2019 | en_US |
dc.identifier.issn | 2331-8422 | en_US |
dc.identifier.uri | http://hdl.handle.net/10553/107258 | - |
dc.description.abstract | Training a Neural Network (NN) with lots of parameters or intricate architectures creates undesired phenomena that complicate the optimization process. To address this issue we propose a first modular approach to NN design, wherein the NN is decomposed into a control module and several functional modules, implementing primitive operations. We illustrate the modular concept by comparing performances between a monolithic and a modular NN on a list sorting problem and show the benefits in terms of training speed, training stability and maintainability. We also discuss some questions that arise in modular NNs. | en_US |
dc.language | eng | en_US |
dc.relation.ispartof | ArXiv.org | en_US |
dc.source | ArXiv.org [ISSN 2331-8422], 25 febrero 2019 | en_US |
dc.subject | 120304 Inteligencia artificial | en_US |
dc.title | Modularity as a means for complexity management in neural networks learning | en_US |
dc.type | info:eu-repo/semantics/article | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.48550/arXiv.1902.09240 | en_US |
dc.investigacion | Ingeniería y Arquitectura | en_US |
dc.type2 | Artículo | en_US |
dc.description.numberofpages | 11 | en_US |
dc.utils.revision | Sí | en_US |
dc.identifier.ulpgc | Sí | en_US |
dc.contributor.buulpgc | BU-INF | en_US |
item.grantfulltext | open | - |
item.fulltext | Con texto completo | - |
crisitem.author.dept | GIR SIANI: Inteligencia Artificial, Redes Neuronales, Aprendizaje Automático e Ingeniería de Datos | - |
crisitem.author.dept | IU Sistemas Inteligentes y Aplicaciones Numéricas | - |
crisitem.author.dept | Departamento de Informática y Sistemas | - |
crisitem.author.dept | GIR SIANI: Inteligencia Artificial, Redes Neuronales, Aprendizaje Automático e Ingeniería de Datos | - |
crisitem.author.dept | IU Sistemas Inteligentes y Aplicaciones Numéricas | - |
crisitem.author.dept | Departamento de Informática y Sistemas | - |
crisitem.author.orcid | 0000-0003-1381-2262 | - |
crisitem.author.orcid | 0000-0001-9717-8048 | - |
crisitem.author.parentorg | IU Sistemas Inteligentes y Aplicaciones Numéricas | - |
crisitem.author.parentorg | IU Sistemas Inteligentes y Aplicaciones Numéricas | - |
crisitem.author.fullName | Castillo Bolado, David Alejandro | - |
crisitem.author.fullName | Guerra Artal, Cayetano | - |
crisitem.author.fullName | Hernández Tejera, Francisco Mario | - |
Colección: | Artículos |
Visitas
132
actualizado el 21-sep-2024
Descargas
100
actualizado el 21-sep-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.