Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/107258
Título: | Modularity as a means for complexity management in neural networks learning | Autores/as: | Castillo Bolado, David Guerra-Artal, Cayetano Hernandez-Tejera, Mario |
Clasificación UNESCO: | 120304 Inteligencia artificial | Fecha de publicación: | 2019 | Publicación seriada: | ArXiv.org | Resumen: | Training a Neural Network (NN) with lots of parameters or intricate architectures creates undesired phenomena that complicate the optimization process. To address this issue we propose a first modular approach to NN design, wherein the NN is decomposed into a control module and several functional modules, implementing primitive operations. We illustrate the modular concept by comparing performances between a monolithic and a modular NN on a list sorting problem and show the benefits in terms of training speed, training stability and maintainability. We also discuss some questions that arise in modular NNs. | URI: | http://hdl.handle.net/10553/107258 | ISSN: | 2331-8422 | DOI: | 10.48550/arXiv.1902.09240 | Fuente: | ArXiv.org [ISSN 2331-8422], 25 febrero 2019 |
Colección: | Artículos |
Visitas
132
actualizado el 21-sep-2024
Descargas
100
actualizado el 21-sep-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.