Please use this identifier to cite or link to this item:
https://accedacris.ulpgc.es/jspui/handle/10553/107258
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Castillo Bolado, David | en_US |
| dc.contributor.author | Guerra-Artal, Cayetano | en_US |
| dc.contributor.author | Hernandez-Tejera, Mario | en_US |
| dc.date.accessioned | 2021-05-21T17:32:43Z | - |
| dc.date.available | 2021-05-21T17:32:43Z | - |
| dc.date.issued | 2019 | en_US |
| dc.identifier.issn | 2331-8422 | en_US |
| dc.identifier.uri | https://accedacris.ulpgc.es/handle/10553/107258 | - |
| dc.description.abstract | Training a Neural Network (NN) with lots of parameters or intricate architectures creates undesired phenomena that complicate the optimization process. To address this issue we propose a first modular approach to NN design, wherein the NN is decomposed into a control module and several functional modules, implementing primitive operations. We illustrate the modular concept by comparing performances between a monolithic and a modular NN on a list sorting problem and show the benefits in terms of training speed, training stability and maintainability. We also discuss some questions that arise in modular NNs. | en_US |
| dc.language | eng | en_US |
| dc.relation.ispartof | ArXiv.org | en_US |
| dc.source | ArXiv.org [ISSN 2331-8422], 25 febrero 2019 | en_US |
| dc.subject | 120304 Inteligencia artificial | en_US |
| dc.title | Modularity as a means for complexity management in neural networks learning | en_US |
| dc.type | info:eu-repo/semantics/article | en_US |
| dc.type | Article | en_US |
| dc.identifier.doi | 10.48550/arXiv.1902.09240 | en_US |
| dc.investigacion | Ingeniería y Arquitectura | en_US |
| dc.type2 | Artículo | en_US |
| dc.description.numberofpages | 11 | en_US |
| dc.utils.revision | Sí | en_US |
| dc.identifier.ulpgc | Sí | en_US |
| dc.contributor.buulpgc | BU-INF | en_US |
| item.grantfulltext | open | - |
| item.fulltext | Con texto completo | - |
| crisitem.author.dept | GIR SIANI: Inteligencia Artificial, Redes Neuronales, Aprendizaje Automático e Ingeniería de Datos | - |
| crisitem.author.dept | IU de Sistemas Inteligentes y Aplicaciones Numéricas en Ingeniería | - |
| crisitem.author.dept | Departamento de Informática y Sistemas | - |
| crisitem.author.dept | GIR SIANI: Inteligencia Artificial, Redes Neuronales, Aprendizaje Automático e Ingeniería de Datos | - |
| crisitem.author.dept | IU de Sistemas Inteligentes y Aplicaciones Numéricas en Ingeniería | - |
| crisitem.author.dept | Departamento de Informática y Sistemas | - |
| crisitem.author.orcid | 0000-0003-1381-2262 | - |
| crisitem.author.orcid | 0000-0001-9717-8048 | - |
| crisitem.author.parentorg | IU de Sistemas Inteligentes y Aplicaciones Numéricas en Ingeniería | - |
| crisitem.author.parentorg | IU de Sistemas Inteligentes y Aplicaciones Numéricas en Ingeniería | - |
| crisitem.author.fullName | Castillo Bolado, David Alejandro | - |
| crisitem.author.fullName | Guerra Artal, Cayetano | - |
| crisitem.author.fullName | Hernández Tejera, Francisco Mario | - |
| Appears in Collections: | Artículos | |
Page view(s)
94
checked on Jan 10, 2026
Download(s)
42
checked on Jan 10, 2026
Google ScholarTM
Check
Altmetric
Share
Export metadata
Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.
