Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/107258
Título: Modularity as a means for complexity management in neural networks learning
Autores/as: Castillo Bolado, David 
Guerra-Artal, Cayetano 
Hernandez-Tejera, Mario 
Clasificación UNESCO: 120304 Inteligencia artificial
Fecha de publicación: 2019
Publicación seriada: ArXiv.org 
Resumen: Training a Neural Network (NN) with lots of parameters or intricate architectures creates undesired phenomena that complicate the optimization process. To address this issue we propose a first modular approach to NN design, wherein the NN is decomposed into a control module and several functional modules, implementing primitive operations. We illustrate the modular concept by comparing performances between a monolithic and a modular NN on a list sorting problem and show the benefits in terms of training speed, training stability and maintainability. We also discuss some questions that arise in modular NNs.
URI: http://hdl.handle.net/10553/107258
ISSN: 2331-8422
DOI: 10.48550/arXiv.1902.09240
Fuente: ArXiv.org [ISSN 2331-8422], 25 febrero 2019
Colección:Artículos
miniatura
Adobe PDF (1,12 MB)
Vista completa

Visitas

132
actualizado el 21-sep-2024

Descargas

100
actualizado el 21-sep-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.