Please use this identifier to cite or link to this item:
Title: Existence of positive solutions in the space of Lipschitz functions for a fractional boundary problem with nonlocal boundary condition
Authors: Caballero, J. 
López, B. 
Sadarangani, K. 
UNESCO Clasification: 120299 Otras (especificar)
120219 Ecuaciones diferenciales ordinarias
Keywords: Fractional boundary value problem
Hölder spaces
Positive solution
Issue Date: 2021
Journal: Journal of Fixed Point Theory and Applications 
Abstract: In this paper, we study the existence of positive solutions for the following nonlinear fractional boundary value problem: D0+αu(t)+f(t,u(t),(Hu)(t))=0,0<t<1,u(0)=u′(0)=0,u′(1)=βu(ξ),}where 2 < α≤ 3 , 0 < ξ< 1 , 0 ≤ βξα-1< (α- 1) , H is an operator (not necessarily linear) applying C[0 , 1] into itself and D0+α denotes the standard Riemann–Liouville fractional derivative of order α. Our solutions are placed in the space of Lipschitz functions and the main tools used in the study are a sufficient condition for the relative compactness in Hölder spaces and the Schauder fixed point theorem. Moreover, we present one example illustrating our results.
ISSN: 1661-7738
DOI: 10.1007/s11784-021-00864-2
Source: Journal Of Fixed Point Theory And Applications[ISSN 1661-7738],v. 23 (2), (Mayo 2021)
Appears in Collections:Artículos
Show full item record

Google ScholarTM




Export metadata

Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.