Please use this identifier to cite or link to this item:
http://hdl.handle.net/10553/107004
Title: | Existence of positive solutions in the space of Lipschitz functions for a fractional boundary problem with nonlocal boundary condition | Authors: | Caballero, J. López, B. Sadarangani, K. |
UNESCO Clasification: | 120299 Otras (especificar) 120219 Ecuaciones diferenciales ordinarias |
Keywords: | Fractional boundary value problem Hölder spaces Positive solution |
Issue Date: | 2021 | Journal: | Journal of Fixed Point Theory and Applications | Abstract: | In this paper, we study the existence of positive solutions for the following nonlinear fractional boundary value problem: D0+αu(t)+f(t,u(t),(Hu)(t))=0,0<t<1,u(0)=u′(0)=0,u′(1)=βu(ξ),}where 2 < α≤ 3 , 0 < ξ< 1 , 0 ≤ βξα-1< (α- 1) , H is an operator (not necessarily linear) applying C[0 , 1] into itself and D0+α denotes the standard Riemann–Liouville fractional derivative of order α. Our solutions are placed in the space of Lipschitz functions and the main tools used in the study are a sufficient condition for the relative compactness in Hölder spaces and the Schauder fixed point theorem. Moreover, we present one example illustrating our results. | URI: | http://hdl.handle.net/10553/107004 | ISSN: | 1661-7738 | DOI: | 10.1007/s11784-021-00864-2 | Source: | Journal Of Fixed Point Theory And Applications[ISSN 1661-7738],v. 23 (2), (Mayo 2021) |
Appears in Collections: | Artículos |
SCOPUSTM
Citations
1
checked on Sep 15, 2024
WEB OF SCIENCETM
Citations
1
checked on Sep 15, 2024
Page view(s)
134
checked on Jun 22, 2024
Google ScholarTM
Check
Altmetric
Share
Export metadata
Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.