Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/107004
Title: Existence of positive solutions in the space of Lipschitz functions for a fractional boundary problem with nonlocal boundary condition
Authors: Caballero, J. 
López, B. 
Sadarangani, K. 
UNESCO Clasification: 120299 Otras (especificar)
120219 Ecuaciones diferenciales ordinarias
Keywords: Fractional boundary value problem
Hölder spaces
Positive solution
Issue Date: 2021
Journal: Journal of Fixed Point Theory and Applications 
Abstract: In this paper, we study the existence of positive solutions for the following nonlinear fractional boundary value problem: D0+αu(t)+f(t,u(t),(Hu)(t))=0,0<t<1,u(0)=u′(0)=0,u′(1)=βu(ξ),}where 2 < α≤ 3 , 0 < ξ< 1 , 0 ≤ βξα-1< (α- 1) , H is an operator (not necessarily linear) applying C[0 , 1] into itself and D0+α denotes the standard Riemann–Liouville fractional derivative of order α. Our solutions are placed in the space of Lipschitz functions and the main tools used in the study are a sufficient condition for the relative compactness in Hölder spaces and the Schauder fixed point theorem. Moreover, we present one example illustrating our results.
URI: http://hdl.handle.net/10553/107004
ISSN: 1661-7738
DOI: 10.1007/s11784-021-00864-2
Source: Journal Of Fixed Point Theory And Applications[ISSN 1661-7738],v. 23 (2), (Mayo 2021)
Appears in Collections:Artículos
Show full item record

SCOPUSTM   
Citations

1
checked on Nov 17, 2024

WEB OF SCIENCETM
Citations

1
checked on Nov 17, 2024

Page view(s)

147
checked on Oct 5, 2024

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.