Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/107004
DC FieldValueLanguage
dc.contributor.authorCaballero, J.-
dc.contributor.authorLópez, B.-
dc.contributor.authorSadarangani, K.-
dc.date.accessioned2021-04-26T12:31:06Z-
dc.date.available2021-04-26T12:31:06Z-
dc.date.issued2021-
dc.identifier.issn1661-7738-
dc.identifier.otherScopus-
dc.identifier.otherWoS-
dc.identifier.urihttp://hdl.handle.net/10553/107004-
dc.description.abstractIn this paper, we study the existence of positive solutions for the following nonlinear fractional boundary value problem: D0+αu(t)+f(t,u(t),(Hu)(t))=0,0<t<1,u(0)=u′(0)=0,u′(1)=βu(ξ),}where 2 < α≤ 3 , 0 < ξ< 1 , 0 ≤ βξα-1< (α- 1) , H is an operator (not necessarily linear) applying C[0 , 1] into itself and D0+α denotes the standard Riemann–Liouville fractional derivative of order α. Our solutions are placed in the space of Lipschitz functions and the main tools used in the study are a sufficient condition for the relative compactness in Hölder spaces and the Schauder fixed point theorem. Moreover, we present one example illustrating our results.-
dc.languageeng-
dc.relation.ispartofJournal of Fixed Point Theory and Applications-
dc.sourceJournal Of Fixed Point Theory And Applications[ISSN 1661-7738],v. 23 (2), (Mayo 2021)-
dc.subject120299 Otras (especificar)-
dc.subject120219 Ecuaciones diferenciales ordinarias-
dc.subject.otherFractional boundary value problem-
dc.subject.otherHölder spaces-
dc.subject.otherPositive solution-
dc.titleExistence of positive solutions in the space of Lipschitz functions for a fractional boundary problem with nonlocal boundary condition-
dc.typeinfo:eu-repo/semantics/Article-
dc.typeArticle-
dc.identifier.doi10.1007/s11784-021-00864-2-
dc.identifier.scopus85104248919-
dc.identifier.isi000638862800001-
dc.contributor.authorscopusid7102010775-
dc.contributor.authorscopusid36623836800-
dc.contributor.authorscopusid6603285515-
dc.identifier.eissn1661-7746-
dc.identifier.issue2-
dc.relation.volume23-
dc.investigacionCiencias-
dc.type2Artículo-
dc.contributor.daisngid31442313-
dc.contributor.daisngid17438383-
dc.contributor.daisngid298123-
dc.description.numberofpages14-
dc.utils.revision-
dc.contributor.wosstandardWOS:Caballero, J-
dc.contributor.wosstandardWOS:Lopez, B-
dc.contributor.wosstandardWOS:Sadarangani, K-
dc.date.coverdateMayo 2021-
dc.identifier.ulpgc-
dc.contributor.buulpgcBU-INF-
dc.description.sjr0,834
dc.description.jcr2,0
dc.description.sjrqQ1
dc.description.jcrqQ1
item.grantfulltextnone-
item.fulltextSin texto completo-
crisitem.author.deptGIR Análisis funcional y ecuaciones integrales-
crisitem.author.deptDepartamento de Matemáticas-
crisitem.author.deptGIR Análisis funcional y ecuaciones integrales-
crisitem.author.deptDepartamento de Matemáticas-
crisitem.author.deptGIR Análisis funcional y ecuaciones integrales-
crisitem.author.deptDepartamento de Matemáticas-
crisitem.author.orcid0000-0001-8842-426X-
crisitem.author.orcid0000-0002-1484-0890-
crisitem.author.orcid0000-0002-7090-0114-
crisitem.author.parentorgDepartamento de Matemáticas-
crisitem.author.parentorgDepartamento de Matemáticas-
crisitem.author.parentorgDepartamento de Matemáticas-
crisitem.author.fullNameCaballero Mena, Josefa-
crisitem.author.fullNameLópez Brito, María Belén-
crisitem.author.fullNameSadarangani Sadarangani, Kishin Bhagwands-
Appears in Collections:Artículos
Show simple item record

SCOPUSTM   
Citations

1
checked on Nov 17, 2024

WEB OF SCIENCETM
Citations

1
checked on Nov 17, 2024

Page view(s)

147
checked on Oct 5, 2024

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.