Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/107004
Título: | Existence of positive solutions in the space of Lipschitz functions for a fractional boundary problem with nonlocal boundary condition | Autores/as: | Caballero, J. López, B. Sadarangani, K. |
Clasificación UNESCO: | 120299 Otras (especificar) 120219 Ecuaciones diferenciales ordinarias |
Palabras clave: | Fractional boundary value problem Hölder spaces Positive solution |
Fecha de publicación: | 2021 | Publicación seriada: | Journal of Fixed Point Theory and Applications | Resumen: | In this paper, we study the existence of positive solutions for the following nonlinear fractional boundary value problem: D0+αu(t)+f(t,u(t),(Hu)(t))=0,0<t<1,u(0)=u′(0)=0,u′(1)=βu(ξ),}where 2 < α≤ 3 , 0 < ξ< 1 , 0 ≤ βξα-1< (α- 1) , H is an operator (not necessarily linear) applying C[0 , 1] into itself and D0+α denotes the standard Riemann–Liouville fractional derivative of order α. Our solutions are placed in the space of Lipschitz functions and the main tools used in the study are a sufficient condition for the relative compactness in Hölder spaces and the Schauder fixed point theorem. Moreover, we present one example illustrating our results. | URI: | http://hdl.handle.net/10553/107004 | ISSN: | 1661-7738 | DOI: | 10.1007/s11784-021-00864-2 | Fuente: | Journal Of Fixed Point Theory And Applications[ISSN 1661-7738],v. 23 (2), (Mayo 2021) |
Colección: | Artículos |
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.