Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/50497
Título: Enlarging instruction streams
Autores/as: Santana, Oliverio J. 
Ramirez, Alex
Valero, Mateo
Clasificación UNESCO: 330406 Arquitectura de ordenadores
Fecha de publicación: 2007
Editor/a: 0018-9340
Publicación seriada: IEEE Transactions on Computers 
Resumen: The stream fetch engine is a high-performance fetch architecture based on the concept of an instruction stream. We call a sequence of instructions from the target of a taken branch to the next taken branch, potentially containing multiple basic blocks, a stream. The long length of instruction streams makes it possible for the stream fetch engine to provide a high fetch bandwidth and to hide the branch predictor access latency, leading to performance results close to a trace cache at a lower implementation cost and complexity. Therefore, enlarging instruction streams is an excellent way to improve the stream fetch engine. In this paper, we present several hardware and software mechanisms focused on enlarging those streams that finalize at particular branch types. However, our results point out that focusing on particular branch types is not a good strategy due to Amdahl's law. Consequently, we propose the multiple-stream predictor, a novel mechanism that deals with all branch types by combining single streams into long virtual streams. This proposal tolerates the prediction table access latency without requiring the complexity caused by additional hardware mechanisms like prediction overriding. Moreover, it provides high-performance results which are comparable to state-of-the-art fetch architectures but with a simpler design that consumes less energy.
URI: http://hdl.handle.net/10553/50497
ISSN: 0018-9340
DOI: 10.1109/TC.2007.70742
Fuente: IEEE Transactions on Computers[ISSN 0018-9340],v. 56, p. 1342-1357
Colección:Artículos
Vista completa

Citas SCOPUSTM   

13
actualizado el 17-nov-2024

Citas de WEB OF SCIENCETM
Citations

8
actualizado el 17-nov-2024

Visitas

60
actualizado el 02-dic-2023

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.