Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/48807
Título: | Study of long-term quality of online signature verification systems | Autores/as: | Kutzner, Tobias Bönninger, Ingrid Travieso, Carlos M. Dutta, Malay Kishore Singh, Anushikha |
Clasificación UNESCO: | 3307 Tecnología electrónica | Palabras clave: | Online Handwrting Signatur Writer Verification Sessions Data Mining, et al. |
Fecha de publicación: | 2017 | Publicación seriada: | 2nd International Conference on Communication, Control and Intelligent Systems, CCIS 2016 | Conferencia: | 2nd International Conference on Communication, Control and Intelligent Systems, CCIS 2016 | Resumen: | Real handwriting authentication systems need a robust writer identification over a long time period. The paper analyzes signature sessions of the ATV-Signature Long Term Database (ATV-SLT DB). The database contains 6 sessions generated by 27 users over 15 month. The quality change of the verification results over a period of 15 month is examined. 64static and dynamic biometric features from the ATV-SLT DB sessions are extracted and 3 different classifiers are used. For the impostor test a 7th session is added, the impostor session, with 6 signatures for each user. The best result of 99.17% success rate for a correct classification is reached with the k-Nearest Neighbor classifier. The best result of 2.47% false accepted rate is reached with Naïve Bayes classifier. | URI: | http://hdl.handle.net/10553/48807 | ISBN: | 9781509032105 | DOI: | 10.1109/CCIntelS.2016.7878206 | Fuente: | 2nd International Conference on Communication, Control and Intelligent Systems, CCIS 2016 (7878206), p. 85-88 |
Colección: | Actas de congresos |
Visitas
41
actualizado el 27-ene-2024
Descargas
16
actualizado el 27-ene-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.