Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/48807
Título: Study of long-term quality of online signature verification systems
Autores/as: Kutzner, Tobias
Bönninger, Ingrid
Travieso, Carlos M. 
Dutta, Malay Kishore
Singh, Anushikha
Clasificación UNESCO: 3307 Tecnología electrónica
Palabras clave: Online Handwrting
Signatur
Writer Verification
Sessions
Data Mining, et al.
Fecha de publicación: 2017
Publicación seriada: 2nd International Conference on Communication, Control and Intelligent Systems, CCIS 2016
Conferencia: 2nd International Conference on Communication, Control and Intelligent Systems, CCIS 2016 
Resumen: Real handwriting authentication systems need a robust writer identification over a long time period. The paper analyzes signature sessions of the ATV-Signature Long Term Database (ATV-SLT DB). The database contains 6 sessions generated by 27 users over 15 month. The quality change of the verification results over a period of 15 month is examined. 64static and dynamic biometric features from the ATV-SLT DB sessions are extracted and 3 different classifiers are used. For the impostor test a 7th session is added, the impostor session, with 6 signatures for each user. The best result of 99.17% success rate for a correct classification is reached with the k-Nearest Neighbor classifier. The best result of 2.47% false accepted rate is reached with Naïve Bayes classifier.
URI: http://hdl.handle.net/10553/48807
ISBN: 9781509032105
DOI: 10.1109/CCIntelS.2016.7878206
Fuente: 2nd International Conference on Communication, Control and Intelligent Systems, CCIS 2016 (7878206), p. 85-88
Colección:Actas de congresos
miniatura
Adobe PDF (574,26 kB)
Vista completa

Visitas

41
actualizado el 27-ene-2024

Descargas

16
actualizado el 27-ene-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.