Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/48807
Título: Study of long-term quality of online signature verification systems
Autores/as: Kutzner, Tobias
Bönninger, Ingrid
Travieso, Carlos M. 
Dutta, Malay Kishore
Singh, Anushikha
Clasificación UNESCO: 3307 Tecnología electrónica
Palabras clave: Online Handwrting
Signatur
Writer Verification
Sessions
Data Mining, et al.
Fecha de publicación: 2017
Publicación seriada: 2nd International Conference on Communication, Control and Intelligent Systems, CCIS 2016
Conferencia: 2nd International Conference on Communication, Control and Intelligent Systems, CCIS 2016 
Resumen: Real handwriting authentication systems need a robust writer identification over a long time period. The paper analyzes signature sessions of the ATV-Signature Long Term Database (ATV-SLT DB). The database contains 6 sessions generated by 27 users over 15 month. The quality change of the verification results over a period of 15 month is examined. 64static and dynamic biometric features from the ATV-SLT DB sessions are extracted and 3 different classifiers are used. For the impostor test a 7th session is added, the impostor session, with 6 signatures for each user. The best result of 99.17% success rate for a correct classification is reached with the k-Nearest Neighbor classifier. The best result of 2.47% false accepted rate is reached with Naïve Bayes classifier.
URI: http://hdl.handle.net/10553/48807
ISBN: 9781509032105
DOI: 10.1109/CCIntelS.2016.7878206
Fuente: 2nd International Conference on Communication, Control and Intelligent Systems, CCIS 2016 (7878206), p. 85-88
Colección:Actas de congresos
miniatura
Adobe PDF (574,26 kB)
Vista completa

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.