Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/47458
Título: Anisotropic regularization of posterior probability maps using vector space projections. application to MRI segmentation
Autores/as: Rodriguez-Florido, M. A.
Cárdenes, R.
Westin, C. F.
Alberola, C.
Ruiz-Alzola, J. 
Clasificación UNESCO: 3307 Tecnología electrónica
Palabras clave: Anisotropic Regularization
Markov Random Field
Posterior Probability Model
Synthetic Aperture Radar
Fecha de publicación: 2003
Publicación seriada: Lecture Notes in Computer Science 
Conferencia: 9th International Workshop on Computer Aided Systems Theory 
Resumen: In this paper we address the problem of regularized data classification. To this extent we propose to regularize spatially the class-posterior probability maps, to be used by a MAP classification rule, by applying a non-iterative anisotropic filter to each of the class-posterior maps. Since the filter cannot guarantee that the smoothed maps preserve their probabilities meaning (i.e., probabilities must be in the range [0, 1] and the class-probabilities must sum up to one), we project the smoothed maps onto a probability subspace. Promising results are presented for synthetic and real MRI datasets.
URI: http://hdl.handle.net/10553/47458
ISBN: 3540202218
ISSN: 0302-9743
DOI: 10.1007/978-3-540-45210-2_54
Fuente: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)[ISSN 0302-9743],v. 2809, p. 597-606
Colección:Artículos
miniatura
Adobe PDF (358,08 kB)
Vista completa

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.