Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/47458
Título: Anisotropic regularization of posterior probability maps using vector space projections. application to MRI segmentation
Autores/as: Rodriguez-Florido, M. A.
Cárdenes, R.
Westin, C. F.
Alberola, C.
Ruiz-Alzola, J. 
Clasificación UNESCO: 3307 Tecnología electrónica
Palabras clave: Anisotropic Regularization
Markov Random Field
Posterior Probability Model
Synthetic Aperture Radar
Fecha de publicación: 2003
Publicación seriada: Lecture Notes in Computer Science 
Conferencia: 9th International Workshop on Computer Aided Systems Theory 
Resumen: In this paper we address the problem of regularized data classification. To this extent we propose to regularize spatially the class-posterior probability maps, to be used by a MAP classification rule, by applying a non-iterative anisotropic filter to each of the class-posterior maps. Since the filter cannot guarantee that the smoothed maps preserve their probabilities meaning (i.e., probabilities must be in the range [0, 1] and the class-probabilities must sum up to one), we project the smoothed maps onto a probability subspace. Promising results are presented for synthetic and real MRI datasets.
URI: http://hdl.handle.net/10553/47458
ISBN: 3540202218
ISSN: 0302-9743
DOI: 10.1007/978-3-540-45210-2_54
Fuente: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)[ISSN 0302-9743],v. 2809, p. 597-606
Colección:Artículos
miniatura
Adobe PDF (358,08 kB)
Vista completa

Citas SCOPUSTM   

6
actualizado el 22-dic-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.