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Abstract. In this paper we address the problem of regularized data
classification. To this extent we propose to regularize spatially the class-
posterior probability maps, to be used by a MAP classification rule, by
applying a non-iterative anisotropic filter to each of the class-posterior
maps. Since the filter cannot guarantee that the smoothed maps preserve
their probabilities meaning (i.e., probabilities must be in the range [0, 1]
and the class-probabilities must sum up to one), we project the smoothed
maps onto a probability subspace. Promising results are presented for
synthetic and real MRI datasets.

1 Introduction

Classical approaches to optimal statistical classification usually resort to a filter-
ing step followed by the classifier itself. Ideally the filter should whiten the data in
order to achieve optimality with rules classifying independently every voxel. The
complexity of images, even more with medical images, makes it unfeasible to de-
sign practical whitening filters. Therefore, independent voxel classification leads
to suboptimal results with scattered miss-classifications. Several approaches to
regularize the resulting classification can be thought of. For example, just to
name some of them, it is possible to prefilter the images, to post-regularize the

R. Moreno-Dı́az and F. Pichler (Eds.): EUROCAST 2003, LNCS 2809, pp. 597–606, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

http://www.ctm.ulpgc.es
http://www.lpi.tel.uva.es


598 M.A. Rodriguez-Florido et al.

independent classification using relaxation labeling or mathematical morphology,
or to use the more formal Markov Random Fields approach.

Teo et al. [13] have proposed a new segmentation technique where the class-
conditional posterior probabilities maps obtained from the raw data, i.e. without
any pre-filtering step, are smoothed using the well-known Perona-Malik diffusion
scheme [8]. The classification is then carried out by using independent MAP
(Maximum a Posteriori) rules on the smoothed posterior maps.

The results obtained with this technique are better than with other schemes
because the regularizing diffusion produces piece-wise-constant posterior prob-
ability maps, which yield piece-wise “constant” MAP classifications. However,
it presents some difficulties: Each posterior probability (a scalar field for every
class) is smoothed independently by non-linear diffusion, ignoring the intrinsic
relationship among them, and therefore not guaranteeing the posteriors to sum
up to one for every voxel in each diffusion step. To resolve this, the authors
normalize the addition of posterior probabilities after each discrete iteration,
assuming that every class posterior probability is positive or zero.

Some extensions of this classification framework have been provided, spe-
cially in the fields of MRI (Magnetic Resonance Imaging) and SAR (Synthetic
Aperture Radar). In particular, [12] has shown that the framework can be seen
as a MAP solution of a discrete Markov Random Field with a non-interacting,
analog discontinuity field, and [7] extended it by using a system of coupled PDE’s
in order to guarantee for the diffusion process that the posterior probabilities
are positive and sum up to one in each voxel.

In this work we propose an alternative approach to regularize the posterior
probability fields. The major differences to previous schemes are:

1. Our approach is strictly anisotropic. Notice that the conventional Perona-
Malik diffusion scheme is only homogeneous [15], since it uses a scalar func-
tion of the norm of the gradient as diffusivity.

2. It is not based on coupled PDE’s, but it uses anisotropic-adaptive multidi-
mensional filtering on every class-posterior probability map. A local structure
tensor, extracted from the input image, shapes the filter response adaptively,
and the solution is obtained in a single step by linear combination of a basis
filters outputs [3] [10].

3. In order for the filtered probabilities maps to sum up to one and be positive,
a vector spaces projection approach POCS (Projection on Convex Sets) al-
gorithm is proposed, i.e, the filtered maps are projected onto the bounded
hyper-plane defined by this condition.

The paper is organized as follows: First, after this introduction to the problem,
we review briefly the concepts of regularization and vector spaces projections, and
their relationship. Second, we introduce the POCS approach to MAP segmenta-
tion. Then we review the multidimensional anisotropic filter used to smooth the
posterior maps. And finally, we discuss our results with both synthetic and real
datasets (MRI volumes), and propose some future lines of work.
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2 Regularization and Vector Space Projections

There are several problems in image processing that are considered as ill-posed
in the sense of Hadamard [1] and Tikhonov [14]: A problem is ill-posed if there
is no guarantee of the solution existence, the solution is not unique, or the
solution does not depend continuously on the input data (small variations of
initial conditions of the problem load to big variations on the solution). Typical
examples of ill-posedness are: edge detection, visual interpolation, structure from
stereo, shape from shading, computational of optical flow, and typically inverse
problems.

Regularization theory provides a convenient way to solve ill-posed problems
and to compute solutions that satisfy prescribed smoothness constraints. In fact,
regularization can be seen as the restriction of the space of admissible solutions
by introducing a priori input data information. As Poggio et al. [9] say in their
classical paper, to solve an ill-posed problem expressed like Hx = y, is to find
the value of x that minimize the expression:

‖Hx − y ‖2 +λ ‖Rx‖2 (1)

where λ is the regularization coefficient, R the regularization stabilizing opera-
tor, and H is a linear operator.

Basically, we can distinguish two ways to regularize the solution:

• Variational Regularization ([14]). An energy functional of the regularized
solution fr(x) is minimized with respect to the input data fi(x):

E[fr] =
1
2

∫
((fi − fr)2 +

∞∑
k=1

λk(
∂kfr

∂xk
)2)dx (2)

with λk ≥ 0, such as if λj = 0 ∀ j>n the regularization is called nth order.
If the energy functional can be expressed with only sums of quadratic terms
of the derivatives of the solution, it is equivalent to a linear filtering given
by a smoothing operator.

• Statistical approach ([5]) that fixes the statistical properties of the solution
space. The Bayes estimation taking the appropriate probability distribu-
tions is reduced to an expression similar to the regularization in the sense of
Tikhonov, and if the a priori information is modeled in terms of a Markov
Random Field (MRF) the maximum a posteriori estimation of the MRF is
equivalent to a variational principle of the form of (2), as we mentioned in
the introduction.

Signals with different properties form different subspaces in the general Hilbert
signal space. These subspaces can be overlapped or disjointed, depending on the
constraints. Finding the best approximation of a signal in a subspace can be
achieved by projecting orthogonally the signal onto it. For example, the tradi-
tional sampling paradigm with ideal prefiltering could be seen as an orthogonal
projection of the signals onto the subspace of band-limited signals.
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Therefore, projections onto vector spaces are useful tools to find a subspace
formed by signals that satisfy multiple constraints. Then, an interesting question
arises:Could the regularization be seen as a “projection” of the initial signal onto
a subspace that satisfies the imposed regularity properties? A partially answer to
this question is possible if we consider the Sobolev spaces 1, because nth order
linear regularization is a mapping between Sobolev spaces, where the target
space is included into the starting space: R : Si → Sr with Sr ⊂ Si. However,
the projection is a idempotent operator, and regularization can not be strictly
called a projection. Hence, we can only give a partial affirmative answer to the
previous question.

3 POCS-Based MAP Classification

The goal of any segmentation scheme is to label every voxel as belonging to one
out of N possible classes w1 . . . wN . We will assume that a posterior probability
model p(wi/z(x)) of the class wi conditioned on the image intensity z is known
for every voxel x. Therefore there are N scalar maps, corresponding to the
posterior probabilities of each class for every voxel, which can be stacked in a
vector map of posterior probabilities. It is obvious that the components of the
vector map must be all greater than or equal to zero and sum up to one, i.e.,
the L1-norm is equal to one for every voxel.

Conventional MAP proceeds by selecting the class with the maximum poste-
rior probability, i.e. by choosing the greater component of the vector probability
map at each voxel.

Now, let us consider that the vector probability map is regularized before any
decision is made, in order to obtain a smooth behavior of the posterior proba-
bilities inside regions and steep changes in their boundaries. To this extent the
structure of the original image must be taken into account in order to obtain a
structure tensor to steer the smoothing process: probabilities must be smoothed
inside regions belonging to the same class and along their boundaries, but not
across them. It is clear that the filtered vector map must also have all its com-
ponents greater than or equal to zero and, for every voxel, the L1-norm must
be equal to one. This constraint can be seen at every voxel as the hyper-plane
P1 + · · ·+PN = 1, where Pi corresponds to the i− th component of the posterior
probability vector, ie., to the posterior probability of the class i. See figure 1 for
the three classes case.

This condition is not easy to meet for adaptive anisotropic smoothers in
general. A first possibility to overcome this problem is to normalize the posterior
vector map using a partition function, i.e, by dividing each vector component
by the L1-norm at that voxel. This normalization does not change the result of
the MAP rule though it becomes crucial if more than one iteration (smoothing
and normalization) are carried out before the MAP rule is applied.

1 A Sobolev space of order n is the space of all functions which are square integrable,
and have derivatives well-defined and square integrable up to order n.
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0

P2

P1

P3

1

1

1

n

Π N

P

Ppocs

αN

p

P

Fig. 1. An example of a three classes case with a posterior probability vector
{P1,P2,P3}. On the hyper-plane of interest Π, the points Pn and Ppocs result from
the normalization of components after processing, and the filtered from POCS projec-
tion, respectively. N denotes the normal vector to the plane Π, p every filtered vector,
and α a scalar factor.

Another alternative comes from projecting orthogonally the filtered class
posteriors onto the constraint hyper-plane. This gives the closest class-posterior
probabilities to the filtered ones that satisfy the constraint of summing up to
one. To enforce that every component (every class-posterior probability) of the
posterior probability vector being greater than or equal to zero, a new orthogo-
nally projection must be done onto the hyper-plane restricted to the first hyper-
quadrant. See figure 2 for the three classes case.

This technique is known as POCS, from Projection Onto Convex Sets [6].
POCS is a special case of the composite mapping algorithm that has been widely
used in a variety of settings such as tomography and image restoration. The
main idea of this technique consists of projecting the space of solutions onto
a set attached to some convex constraints (the projection into the associated
convex set is unique).

The projection of the filtered posterior vector onto the constraint hyper-plane
can be easily obtained as follows:

PPOCS = P +
1− < P,N >

‖N‖2 N (3)

where P and N denote the posterior probability vector and the normal vector
to the hyper-plane of interest, respectively.

4 The Smoothing Filter

The application of a smoothing operator is a well known technique of regulariza-
tion, and as we mentioned before, this is a special case of the variational linear
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1

1

0

3

2

1

P

PP1

P

Ppocs

Fig. 2. Constraint of posterior probability greater than or equal to zero of the three
classes case. The notation is the same than in figure 1. Note the second projection onto
the line P3 + P1 = 1.

regularization approach. Traditionally, a PDE-based anisotropic diffusion filter
is used in order to smooth the inside regions while preserving steep discontinu-
ities across the borders. Here, we propose to use a non-iterative anisotropic filter
which renders very good results.

A few words about unsharp-masking, a conventional enhance technique used
by photographers to increase the importance of details in their pictures, will help
us to introduce our anisotropic filter. Unsharp-masking is based on a decompo-
sition of the image in a low pass component and a high-pass one. The high pass
component is obtained from the difference between the image and the low pass
component. If the weight of the high-pass is increased, the level of detail will be
increased too. Then, we can consider that:

• The amount of detail could be adaptive at every point, weighting the high-
pass component locally.

• The anisotropy of the structures should be taken in account to control in
which orientations the high-pass component is important, and leaving the
rest with a low pass component. This allows to smooth in the orientations
of less structure (homogeneous regions, along edges, etc), preserving high
structure elements.

Following these ideas, Knutsson et al. [4], introduced the local anisotropy in-
formation to process 2D grey-scale images. This was later generalized to N -
dimensional images [3], developing an anisotropic N -dimensional adaptive filter,
weighted by the local complexity of the dataset. Basically, this technique makes
a linear combination of the output of a set of basis filters: one low pass (ideally
a Wiener filter) and a set of high-pass filters in different orientations. The low
pass filter fixes the scale of the dataset, and the high-pass ones the detail in each
orientation. The contribution of each high basis component is related to the local
dataset structure, and it is given by some coefficients. These coefficients should
convey the importance of the information in every orientation with respect to
the local structure, giving more weight to that orientation closest to the major
direction of variation. Then, since in our approach the local complexity is coded
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by the local structure tensor T,[2], to obtain the importance of every orienta-
tion, we have to estimate the projection of the eigenvectors of the local structure
tensor at every point onto every vector orientation n̂k, i.e., the inner product of
the normalized local structure tensor C and a basis tensor {Mk} associated to
n̂k. The basis {Mk} is the dual basis of Nk = n̂kn̂T

k , unique and obtained by
the biorthogonality relation:

<Mk,Nl>= δk
l (4)

with δk
l the Kronecker’s delta.

The minimum number of coefficients is the minimum number of high-pass
filters, and it will be given by the relation between the data dimension N and
the rank of this local structure tensor:N(N+1)

2 .
The process is described by the equation 5, where Slp(x) and Shpk

(x), denote
the outputs of the low-pass and high-pass basis filters, respectively.

SAAF (x) = Slp(x) +
N(N+1)/2∑

k=1

<C,Mk> Shpk
(x) (5)

where < ·, · > denotes the inner product of tensors.
Figure 3 shows the flux diagram of our filtering approach is shown for a 2D

grey-level image. The local structure is represented with an ellipsoid associated
to the quadratic form of the structure tensor. The parameters used has been:
ρlp = π

2 and η = 2 (a Gaussian filter).
In the Fourier domain, the basis filter {Lp, Hp1, .., HpN(N+1)/2} used, is given

by the expresion:

Lp(ν)=
{

e−(ρη·∆) if 0 ≤ ρ ≤ ρlp

0 otherwise
(6)

Hpk(ν)=(1 − Lp(ν)) · (ν̂T n̂k)2

with ν the N -dimensional frequency vector, ρ =‖ν‖, ρlp the magnitude of the
frequency where the Lp filter is 1

2 , and ∆ and η filters shape parameters, related
by: ∆ = ln2

ρη
lp

.
A comparison of our filtering approach with an anisotropic diffusion tech-

nique, in the context of 3D medical imaging, can be found in [10].

5 Results

In order to illustrate the proposed approach we show its results on a simple
synthetic image with two vertical regions (see Fig. 4.a). Each region is gener-
ated from IID Gaussian distributions with identical typical deviations (30) and
different mean values (10 on the left region and 70 on the right one). Figure 4.b
shows the results achieved with the optimal MAP classifier considering homoge-
nous priors (0.5 each). Figure 4.c shows the results achieved by applying the
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Input Data

Basis Descomposition

Low Pass  + 3 High Pass 
Slp Shp

Local Structure C

Adaptive Combination

SAAF

Fig. 3. Flux diagram of our filtering approach in a 2D scalar field.

MAP rule after the posteriors have been anisotropically smoothed and POCS-
projected. Notice how inside each region the probability smoothing provides the
correct classification and how the edge between both of them is almost optimally
preserved.

To illustrate the performance of the method, in the case of real data, we
apply it to the classification of the three main brain classes: gray matter (GM),
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Fig. 4. a) Synthetic image with two regions b) MAP classification c) Regularized MAP
classification

(a) (b) (c)

Fig. 5. a) Zoomed MRI brain image b) MAP classification c) Regularized MAP. Black:
Background, Dark Gray: CSF, Gray: GM, and White: WM.

white matter (WM) and cerebrospinal fluid (CSF), from a 3D (256 × 256 ×
160) MRI data. The brain is first extracted using a skull stripping automatic
algorithm (thresholding followed by a light erosion, a hard opening, and region
growing in order to obtain a brain mask that is applied to the original MRI data).
Figure 5.a shows a zoomed area of a slice from the original MRI volume, Fig. 5.b
shows the MAP classification (the parameters are provided from a ground-truth
segmentation) and Fig. 5.c shows the regularized MAP segmentation using the
same probabilistic characterization. The labels for the segmentation are white
for WM, gray for GM, dark gray for CSF, and black for the background. Notice
how the regularized MAP provides much more spatially coherent classifications
while preserving the borders.

6 Discussion and Future Directions

In this paper we have proposed an approach to improve conventional indepen-
dent voxel-wise MAP classifications. The approach is non-iterative and fast, and
produces piecewise segmentations while preserving the class-borders. Our pre-
liminary results are encouraging,though much more validation is still needed to
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introduce it in routine clinical segmentations. Extensions of the approach include
its use in arbitrary vector fields with differents constraints. In fact, recently, we
have developed a new approach to regularize tensor fields [11], using a variation
of this technique.
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