Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/47404
Título: | Classification of stationary signals with mixed spectrum | Autores/as: | Saavedra Santana, Pedro Santana-Del-Pino, Angelo Hernández-Flores, Carmen N. Artiles-Romero, Juan González-Henríquez, Juan J. |
Clasificación UNESCO: | 120903 Análisis de datos 240401 Bioestadística |
Palabras clave: | Classification Logit Boost Mixed spectrum Stationary processes |
Fecha de publicación: | 2011 | Publicación seriada: | International Journal Of Biostatistics | Resumen: | This paper deals with the problem of discrimination between two sets of complex signals generated by stationary processes with both random effects and mixed spectral distributions. The presence of outlier signals and their influence on the classification process is also considered. As an initial input, a feature vector obtained from estimations of the spectral distribution is proposed and used with two different learning machines, namely a single artificial neural network and the LogitBoost classifier. Performance of both methods is evaluated on five simulation studies as well as on a set of actual data of electroencephalogram (EEG) records obtained from both normal subjects and others having experienced epileptic seizures. Of the different classification methods, Logitboost is shown to be more robust to the presence of outlier signals | URI: | http://hdl.handle.net/10553/47404 | ISSN: | 1557-4679 | DOI: | 10.2202/1557-4679.1288 | Fuente: | International Journal of Biostatistics [ISSN 1557-4679], v. 7 (1), p. 1-17 |
Colección: | Artículos |
Visitas
79
actualizado el 17-feb-2024
Descargas
105
actualizado el 17-feb-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.