Please use this identifier to cite or link to this item:
http://hdl.handle.net/10553/47404
Title: | Classification of stationary signals with mixed spectrum | Authors: | Saavedra Santana, Pedro Santana-Del-Pino, Angelo Hernández-Flores, Carmen N. Artiles-Romero, Juan González-Henríquez, Juan J. |
UNESCO Clasification: | 120903 Análisis de datos 240401 Bioestadística |
Keywords: | Classification Logit Boost Mixed spectrum Stationary processes |
Issue Date: | 2011 | Journal: | International Journal Of Biostatistics | Abstract: | This paper deals with the problem of discrimination between two sets of complex signals generated by stationary processes with both random effects and mixed spectral distributions. The presence of outlier signals and their influence on the classification process is also considered. As an initial input, a feature vector obtained from estimations of the spectral distribution is proposed and used with two different learning machines, namely a single artificial neural network and the LogitBoost classifier. Performance of both methods is evaluated on five simulation studies as well as on a set of actual data of electroencephalogram (EEG) records obtained from both normal subjects and others having experienced epileptic seizures. Of the different classification methods, Logitboost is shown to be more robust to the presence of outlier signals | URI: | http://hdl.handle.net/10553/47404 | ISSN: | 1557-4679 | DOI: | 10.2202/1557-4679.1288 | Source: | International Journal of Biostatistics [ISSN 1557-4679], v. 7 (1), p. 1-17 |
Appears in Collections: | Artículos |
Page view(s)
79
checked on Feb 17, 2024
Download(s)
105
checked on Feb 17, 2024
Google ScholarTM
Check
Altmetric
Share
Export metadata
Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.