Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/47404
Título: Classification of stationary signals with mixed spectrum
Autores/as: Saavedra Santana, Pedro 
Santana-Del-Pino, Angelo 
Hernández-Flores, Carmen N. 
Artiles-Romero, Juan 
González-Henríquez, Juan J. 
Clasificación UNESCO: 120903 Análisis de datos
240401 Bioestadística
Palabras clave: Classification
Logit Boost
Mixed spectrum
Stationary processes
Fecha de publicación: 2011
Publicación seriada: International Journal Of Biostatistics 
Resumen: This paper deals with the problem of discrimination between two sets of complex signals generated by stationary processes with both random effects and mixed spectral distributions. The presence of outlier signals and their influence on the classification process is also considered. As an initial input, a feature vector obtained from estimations of the spectral distribution is proposed and used with two different learning machines, namely a single artificial neural network and the LogitBoost classifier. Performance of both methods is evaluated on five simulation studies as well as on a set of actual data of electroencephalogram (EEG) records obtained from both normal subjects and others having experienced epileptic seizures. Of the different classification methods, Logitboost is shown to be more robust to the presence of outlier signals
URI: http://hdl.handle.net/10553/47404
ISSN: 1557-4679
DOI: 10.2202/1557-4679.1288
Fuente: International Journal of Biostatistics [ISSN 1557-4679], v. 7 (1), p. 1-17
Colección:Artículos
miniatura
pdf
Adobe PDF (278,45 kB)
Vista completa

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.