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Abstract

This paper deals with the problem of discrimination between two sets of complex signals
generated by stationary processes with both random effects and mixed spectral distributions. The
presence of outlier signals and their influence on the classification process is also considered. As
an initial input, a feature vector obtained from estimations of the spectral distribution is proposed
and used with two different learning machines, namely a single artificial neural network and the
LogitBoost classifier. Performance of both methods is evaluated on five simulation studies as well
as on a set of actual data of electroencephalogram (EEG) records obtained from both normal
subjects and others having experienced epileptic seizures. Of the different classification methods,
Logitboost is shown to be more robust to the presence of outlier signals.
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1 The problem of classifying stationary signals
In recent years, the demand for non-invasive diagnostic procedures has stimulated
an increasing interest in the development of methods for classifying biomedical sig-
nals. The devices currently available in hospitals and healthcare facilities can easily
produce signals such as electrocardiograms (EKG), electroencephalogram (EEG),
electromyogram (EMG) or Doppler. These signals must be analysed quickly and
accurately in order for the physician to be able to correctly diagnose the patient. In
many cases the methods used for the analysis of these signals assume they are sta-
tionary with absolutely continuous spectral distributions. When the assumption of
stationarity is admissible, the analysis of these signals in the frequency domain can
lead to better discrimination than in the time domain (Shumway and Unger, 1974,
Alagon, 1989, Vilar and Pértega, 2004, Chinipardaz and Cox, 2004). These authors
consider the problem of discriminating between two sets of signals, where each
one is generated by a Gaussian linear process, and propose a classification method
based on the Kullback-Leibler discrimination information rate. Vilar and Pértega
(2004) deal with the problem by using nonparametric estimators for the spectral
density functions. Alagon (1989) analyzes the validity of the evoked potentials of
the EEG for the diagnosis of certain neurological diseases.

The assumption of absolutely continuous spectral distribution is often un-
realistic when biomedical signals are considered. Biological systems usually have
periodicities in their behaviour patterns (Ahdesmäki, Lähdesmäki, Pearson, Hut-
tunen, and Yli-Harja, 2005) and many of these periodicities can be detected as
atoms in the spectrum of the signal. For example, the records of the electroen-
cephalogram of healthy subjects in conditions of rest normally have a spectrum
with discrete components. Pardey, Roberts, and Tarassenko (1996), in a review
of modelling techniques for EEG analysis, consider mixed spectral distributions.
Bhansali (1970) uses the mixed spectrum to analyse the annual record of the num-
ber of the Canadian lynx trapped in the Mackenzie River district of North-West
Canada for the period 1821-1934 (Canadian lynx data set).

Another usual assumption in the analysis of biomedical signals is that of
considering that all the times series measured on subjects of the same population are
generated by the same stationary process. In a more realistic approach, Diggle and
Al-Wasel (1993, 1997) suggest that the time series corresponding to levels of LH
hormone in blood samples from subjects of a given population can be represented
by a random effects model. This model means that the underlying spectrum of the
stochastic process representing the time variation in hormone concentration varies
randomly between subjects. The model is based on the asymptotic representation
of the periodogram of linear processes and involves a population parameter (the
population spectrum), a random component specific for each subject, and a term
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related to the residuals of each periodogram. Hernández-Flores, Artiles-Romero,
and Saavedra-Santana (1999) used a more general model to estimate the population
spectrum by means of the bootstrap. Saavedra, Hernández, and Artiles (2000),
Saavedra, Hernández, Luengo, Artiles, and Santana (2008) developed a theory for
analyzing sets of time series in the frequency domain. Luengo, Hernández, and
Saavedra (2006) compared the patterns of time series generated by two populations.

Modern techniques such as classification and regression trees (Breiman,
Friedman, Stone, and Olshen, 1984), artificial neural networks (Ripley, 1996) and,
more recently, Boosting (Freund and Schapire, 1996, Friedman, Hastie, and Tib-
shirani, 2000, Hastie, Tibshirani, and Friedman, 2001, Buhlman, 2006) open up a
new approach to the problem of classifying time series. For instance, boosting deci-
sion trees have been used for the classification of gene expression data in Ben-Dor,
Bruhn, Friedman, Nachman, Schummer, and Yakhini (2000) and Dudoit, Fridlyand,
and Speed (2002). Both studies compare the original AdaBoost algorithm that was
proposed by Freund and Schapire (1996) to other classifiers, and both recognize
that the results obtained are not very impressive. However, Dettling and Buhlmann
(2003) dramatically improved the results by performing a selection of variables and
using the LogitBoost algorithm instead of AdaBoost.

In this paper we deal with the problem of discriminating between two sets of
stationary signals. Any method that aims to make correct classifications of biomed-
ical signals must take into account the aforementioned variability between subjects
and the possible presence of periodicities in the series. Thus, we propose the use of
a general framework for the modelling of the signals, assuming that these have been
generated by processes with both random effects and mixed spectral distribution,
including the possible existence of outlier signals (signals generated by patterns
different and unrelated to the target population, possibly corresponding to anoma-
lous subjects). We use four simulation studies and actual EEG data to show how an
adequate modelling of the signals, combined with a discriminant method capable
of incorporating the information provided by the model, can significantly improve
the rate of correct classifications.

The class of stationary processes we consider for modelling random effects
is described in Section 2. A review of a method due to Kooperberg, Stone, and
Truong (1995) for the estimation of mixed spectra is presented in Section 3. In Sec-
tion 4, three classification methods are described based, respectively, on Kullback-
Leibler information, neural networks and Logitboost. The last two methods use the
same feature vector which is proposed in Section 4.2, formed by combining the sin-
gular and absolutely continuous components of the spectral distributions estimated
from each series. Finally four simulation studies and actual records of EEG corre-
sponding to healthy subjects in normal state and with epileptic episodes are used to
compare the performance of the classification achieved by each method.
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2 Random effects model for the set of time series
We consider a population of objects A, such that on each a ∈ A a stationary process
Xt (a) can be observed. In order for this process to be general enough for modelling
biomedical signals with possible periodicities in its behavior patterns, while allow-
ing for random variability between subjects with respect to a common population
pattern, we assume that this process is of the form:

Xt (a) =
p

∑
k=1

Ra,k cos
(
tλa,k +φa,k

)
+Yt (a) (1)

where λa,k and Ra,k are random variables such that 0 < λa,k ≤ π , Ra,k > 0 and con-
ditionally to a ∈ A, φa,k are independent and uniformly distributed random variables
on the interval [−π,π]. Moreover, Yt (a) is a second order stationary process having
an absolutely continuous spectral distribution, { fa (ω) : |ω| ≤ π} being the set of
spectral density functions. Saavedra et al. (2008) show that {Yt(·) : t ∈ Z} can be
represented as a linear process of random coefficients. Thus, each spectral distri-
bution function Fa (ω) : |ω| ≤ π can be considered as a realization of a stochastic
process on the space A. In addition, it can be expressed (Kooperberg et al., 1995)
by:

Fa (λ ) =

λ∫
−π

fa (ω)dω +∑ω≤λ da (ω) (2)

Here, da (ω) are the so called spectral lines which take on the form da (ω)= R2
a,k

/
2

if ω =±λa,k and da (ω) = 0 otherwise. We refer to ±λa,k, 1 ≤ k ≤ p as the atoms
of the spectral distribution for the subject a.

3 Spectral estimation
Data for the analysis are obtained from a sample of objects a1, . . . ,an randomly
selected from the population A. On each object ai, a stationary process Xt (ai) of
the form (1) is observed at the same times t = 1, . . . ,T . Therefore, the data in the
time domain take on the form:

{Xt (ai) : i = 1, . . . ,n ; t = 1, . . . ,T}

while in the frequency domain, we have{
I(T )ai

(
ω j
)

: i = 1, . . . ,n ; j = 1, . . . , [T/2]
}

3

Saavedra et al.: Classification of Stationary Signals with Mixed Spectrum

Brought to you by | Universidad de Las Palmas de Gran Canaria. ULPGC
Authenticated

Download Date | 7/3/19 7:15 PM



where ω j = 2π j/T are the Fourier frequencies, and I(T )ai

(
ω j
)

the periodogram cor-
responding to the i-th object. For any object a ∈ A, the periodogram is defined
by:

I(T )a (ω) =
1

2πT

∣∣∣∣∣∣∣ T

∑
t=1

Xt (a)exp(−iωt)

∣∣∣∣∣∣∣
2

: −π ≤ ω ≤ π (3)

Under the assumptions that all atoms are located at Fourier frequencies, i.e.
have the form λa,k =ω j for some j, and all time series are Gaussian, it can be shown
(Brillinger, 1981, Theorem 5.2.6) that:

I(T )a
(
ω j
)
=

{
fa
(
ω j
)
+

T
2π

da
(
ω j
)}

Ua, j (4)

where, conditionally to each a, the Ua, j are asymptotically independent and follow
an approximately exponential distribution with unit mean if j < T/2, or the χ2

distribution with one degree of freedom if j = T/2. The function ga (ω) = fa (ω)+
T
2πda (ω) is called the mean function. We use cubic splines and indicator functions,
according to Kooperberg et al. (1995), to estimate the spectral densities fa (ω) and
the line spectrum da (ω). See the appendix for details.

Regarding the conditions for the decomposition (4), from a practical point
of view the assumption of the λa,k being located at Fourier frequencies is not too
restrictive in the context of biomedical signals. With these kind of signals it is usu-
ally possible to have records with a sampling frequency greater enough for possible
atoms being always in or very close to a Fourier frequency. Also, biomedical sig-
nals are usually affected by noises associated to different sources (Pander, 2008):
electromagnetic effects on the measuremente devices, movements, electrical activ-
ity in the near tissues ... In practice, filters must be used to suppress these noises,
particularly those of impulsive nature. Once the series have been correctly filtered
it is reasonable to assume gaussianity.

4 Classification methods
In this section we describe briefly three different classifiers for a partition {A0,A1}
of the population A under study based on a data set of the form:

{(Xt (ai) , Gi) : i = 1, . . . ,n ; t = 1, . . . ,T } (5)

where a1, . . . ,an is a random sample of objects of A, Xt (ai) is a time series consist-
ing of the realization of a stationary process of the form (1) on the object ai, and
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Gi ∈ {1,0} is the class label (Gi = 1 or 0 depending on ai ∈ A1 or ai ∈ A0). We
consider first a classifier based on the Kullback-Leibler discrimination information,
which requires that the stationary processes generating the signals have an abso-
lutely continuous spectral distribution. The second and third classifiers are based
on artificial neural networks and LogitBoost, respectively. Both can be used in
more general scenarios, as is the case of stationary processes with mixed spectral
distribution. These classifiers need a feature vector as input to proceed with the
classification procedure. The same vector, based on the estimated spectrum, is used
for both classifiers and is described in 4.2.

4.1 Classification based on the Kullback-Leibler discrimination
information

As a first scenario for the classification problem let us assume that all time series
in the class Ak : k = 0,1 have been generated by the same stationary process with
an absolutely continuous spectral distribution given by the spectral density function
fk (ω). Let pk (x) be the probability density function corresponding to a random
signal x = (X1 (a) , . . . ,XT (a)) measured on an object at class Ak (note that pk (x) is
independent of a). One classical measure of disparity between p1 (x) and p0 (x) is
the the Kullback-Leibler (KL) discrimination information, defined by:

IT (p1; p0) = T−1Ep1

[
log
(

p1 (x)
p0 (x)

)]

According to Shumway and Unger (1974) and Kakizawa, Shumway, and
Taniguchi (1998), under certain conditions IT (p1; p0) can be asymptotically ap-
proximated by:

D( f1; f0) =
1

4π

∫ π

−π

[
f1 (λ )
f0 (λ )

− log
(

f1 (λ )
f0 (λ )

)
−1
]

dλ (6)

In order to classify the signals {Xt (ai) : i = 1, . . . ,n}, Kakizawa et al. (1998)
use a measure of the form (6) in the following algorithm:

1. First, for every a ∈ A, an adequate spectral estimator f̂a of the true spectral
density fa is obtained from the time series (X1 (a) , . . . ,XT (a)).

2. Then, the disparity between (X1 (a) , . . . ,XT (a)) and the class Ak : k = 1,0 is
evaluated by computing D( fk; f̂a).

3. Finally, the object a is classified into A1 if D( f0; f̂a)−D( f1; f̂a) > 0 or into
A0 otherwise.

5
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In this algorithm fk, k = 0,1 are assumed to be known. If this is not the case,
they must be estimated from training samples of objects whose membership to
each group is known. According to Vilar and Pértega (2004), we can obtain f̂a by
smoothing the corresponding periodogram via local polynomial techniques. Like-
wise, f1 (λ ) and f0 (λ ) can be estimated using the same techniques on the averaged
periodograms of the training signals.

4.2 The feature vector

Using the procedure of Kooperberg et al. (1995) cited in 3, we estimate the discrete
and absolutely continuous components of the spectral distribution from the set of
periodograms. In what follows, we represent by Da the set {d̂a

(
λa, j
)
} j of estimates

of the spectrum lines, and by f̂a (λ ) the estimates of the fa (λ ). In order to establish
a feature vector for the methods of classification that we will consider below, we
fix a set of frequencies 0 < φ1 < .. . < φK < π and for every object ai we define a
vector Vi :

Vi =

(
#(Dai) , ∑ j d̂ai, j ;

1
T

T

∑
j=1

f̂ai

(
ω j
)
,

∫ φ1
0 f̂ai (ω)dω∫ π
0 f̂ai (ω)dω

, . . . ,

∫ φK
φK−1

f̂ai (ω)dω∫ π
0 f̂ai (ω)dω

)
(7)

where:

• #(Dai) is the number of atoms in the estimated spectral distribution;
• ∑ j d̂ai, j represent the contribution of the atoms to the overall spectral power;

• 1
T

T
∑
j=1

f̂ai

(
ω j
)

is the mean value of the estimated spectral density function in

the object ai;
•
∫ φk

φk−1
f̂ai (ω)dω is the contribution of the frequency band [φk−1,φk] to the

spectral power of the absolutely continuous component of the spectrum.

We now describe the classifiers based on neural networks and LogitBoost. In both
cases, the data set available for the construction of the classifier have the form
(Vi,Gi) : i = 1, . . . ,n where Vi is the defined feature and Gi the class label.
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4.3 Classification using artificial neural networks

Artificial neural networks (ANNs) may be defined as structures comprised of dense-
ly interconnected adaptive simple processing elements (neurons) that are capable
of performing massively parallel computations for data processing and knowledge
representation (Schalkoff, 1997). ANNs can be trained to recognize patterns and
the nonlinear models developed during training allow neural networks to generalize
their conclusions and to apply them to patterns not previously encountered. Figure
1 shows a single hidden layer feed-forward neural network, which will be used in
this paper. It consists of: (i) an input layer with neurons representing the feature
Vi = (Vi,1, . . . ,Vi,p) defined in (7), (ii) an output layer with neurons representing the
dependent variables and (iii) one hidden layer containing neurons to help capture
the nonlinearity in the data. Each neuron in the hidden layer sums its input signals
after multiplying them by the strengths of the respective connection weights αm, j
and computes its output Zi,m as a function of the sum:

Zi,m = σ
(

αm,0 +∑ j αm, jVi, j

)
: m = 1, . . . ,M

where σ (x) is some activation function that is necessary to transform the weighted
sum of all signals impinging onto a neuron. As activation function we have used
the logistic `(z) = exp(z)

/
(1+ exp(z)) . Neural networks also need a measure of

fit between what the network predicts for each training pattern and the target value,
or observed value, for that pattern. We have considered the entropy (deviance) as
measure of fit.

¨

4.4 LogitBoost classifier with decision trees

The boosting procedures introduced by Freund and Schapire (1996) are a powerful
classification technique, especially in high dimensional spaces (Buhlman, 2006).
Their aim is to produce an accurate combined classifier from a previous sequence
of weak classifiers. In each boosting iteration m = 1, . . . ,M , objects incorrectly
classified at the previous step have their weights increased, whereas weights are
decreased for those correctly classified. Thus, the m-th classifier h(m) built in step
m is forced to focus more on objects whose current classifications had been difficult
to obtain at previous iterations. The resulting classifier has the following form:

CM (Vi) = sign

(
M

∑
m=1

αm ·h(m) (Vi)

)

7
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Figure 1: Schematic of a single hidden layer, feed-forward neural network

As weak classifiers h(m) we use decision trees with two terminal nodes (Breiman
et al., 1984). A description of the LogitBoost algorithm is provided below.

Step 1: Initialization. Start with an initial committee function H(0) (Vi) ≡ 0 and
initial probabilities p(0) (Vi) = P(Yi = 1 |Vi ) = 1/2 for all i = 1, . . . ,n.

Step 2: Iterations LogitBoost. For m = 1, . . . ,M repeat:
A. Fitting the weak classifier:

I. Compute for i = 1, . . . ,n the weights w(m)
i and the auxiliary variable

z(m)
i by:

w(m)
i = p(m−1) (Vi) ·

(
1− p(m−1) (Vi)

)

z(m)
i =

Yi − p(m−1) (Vi)

w(m)
i

.
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II. Fit the weak classifier using weighted least squares:

h(m) = argmin
h

n

∑
i=1

w(m)
i

(
z(m)

i −h(Vi)
)2

B. Updating

H(m) (Vi) = H(m−1) (Vi)+
1
2

h(m) (Vi)

p(m) (Vi) =
(

1+ exp
(
−2 ·H(m) (Vi)

))−1

C. Output of the value assessed by the classifier:

CM (Vi) = sign
(

H(m)(Vi)
)

5 Numerical study
We now proceed to evaluate the performance of the different classification methods
presented in the previous section. This evaluation is carried out by using both sim-
ulated data and real data. For simulation we have considered five scenarios in order
of increasing generality. Actual data were obtained from EEG records measured on
healthy and epileptic subjects. In all cases, the dataset was split into a training data
set and a validation set. Using this last one, misclassification rates were obtained,
summarized in medians, interquartile ranges and maxima.

5.1 Simulations

The simulations were carried out in five different scenarios. In each one, 400 time
series were generated, 200 in each group (cases and controls). All time series
were generated by stationary processes of the form (1), with Yt (a1,a2) = β1Yt−1 +
β2Yt−2 + εt +a1 εt−1 +a2 εt−2, {εt : t ∈ Z} being a standard Gaussian white noise
with variance 1, β1, β2 fixed coefficients, and a = (a1,a2)

′ the vector of random
coefficients, which has a bivariate probability distribution N2 (µ,C). In those cases
in which a mixed spectra was considered, the number of atoms λa j and its values
were fixed in each group, while the corresponding amplitudes Ra j had a multivariate
normal distribution with the identity as covariance matrix.

9
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Table 1 specifies the parameters of the singular and absolutely continu-
ous components of the time series. In all cases, the number of observations was
T = 500. From the 400 simulated series, 200 were randomly selected to build the
training set. Using this set, the classifiers described in the previous section were
constructed, namely the one based on the Kullback-Leibler divergence (KL), the
artificial neural network, and the Boosting procedure. With the remaining 200 time
series misclassification rates were obtained. The entire procedure (simulation and
calculation of classification error rates) was iterated 100 times. The misclassifica-
tion rates for each repetition are summarized as medians, interquartile ranges and
maximum. For the feature defined in (7), used by the ANN and LogitBoost, we take
K = 3 and φk = k/10 : k = 1,2,4. The scenarios considered are briefly described
below.

Scenario 1. The time series were generated by stationary processes of the form
(1) without a singular component (Xt = Yt). In addition, all ARMA process
parameters were fixed (C = 0).

Scenario 2. The same pattern as in Scenario 1, except that now the coefficients of
the process (part MA) were randomly selected with non-singular covariance
matrix (see Table 1).

Scenario 3. This is the same scenario as above, but allowing in both classes the
5% of the observations to be outlier signals.

Scenario 4. A stationary process with mixed spectral distribution, the absolutely
continuous part being the same as in scenario 2, was used to generate the time
series. The parameters of the singular part are shown in Table 1.

Scenario 5. Same as in scenario 4, with 5% of outlier signals, as in scenario 3.

The simulation study was performed using the R software package, version
2.10 (R Development Core Team, 2010). The results are summarized in table 2.

10
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Table 1: Elements of the simulated signals

Group
Scenario Spectral

Component
A1 (Cases) A0 (Controls)

1 Absolutely
continuous

β1 = 0.8 ;β2 =−0.5

µ =

(
2
1

)
C =

(
0 0
0 0

)
β1 = 0.5 ;β2 =−0.5

µ =

(
2
2

)
C =

(
0 0
0 0

)

2 Absolutely
continuous

β1 = 0.8 ;β2 =−0.5

µ =

(
2
1

)
C =

(
1/6 1/6
1/6 1/6

)
β1 = 0.5 ;β2 =−0.5

µ =

(
2
2

)
C =

(
1/6 1/6
1/6 1/6

)
3 Absolutely

continuous
As in scenario 2 As in scenario 2

Proportion of
outlier signals

5% 5%

4 Singular
R ∼= N3 ((8;9;12) ,I3)
λ = (0.38;0.18;0.025)

R ∼= N4 ((5;8;7;9) ,I4)
λ = (0.38;0.12;0.6;0.025)

Absolutely
continuous

As in scenario 2 As in scenario 2

5 Singular As in scenario 4 As in scenario 4
Absolutely
continuous

As in scenario 2 As in scenario 2

Proportion of
outlier signals

5% 5%

Table 2: Evaluation of the classifiers according the five scenarios

Scenario Kullback-Leibler Neural Network LogitBoost
Median (IQR) Max Median (IQR) Max Median (IQR) Max

1 0 0 0.5 (0 ; 1.0) 3.0 0.5 (0 ; 1) 2.5
2 10.0 (8.0 ; 12.5) 15.5 3.5 (2.5 ; 4.5) 10.0 2.5 (1.5 ; 3.5) 7.0
3 11.7 (10.5 ; 14.0) 19.5 7.0 (5.5 ; 8.0) 14.5 4.7 (4.0 ; 6.0) 9.5
4 10.5 (9.0 ; 11.5) 16.0 4.0 (3.0 ; 5.0) 7.0 2.5 (2.0 ; 3.5) 6.5
5 12.0 (10.5 ; 13.5) 17.0 6.5 (5.0 ; 8.0) 13.5 4.5 (4.0 ; 5.5) 9.0
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5.2 Diagnosis of epilepsy

Epilepsy is one of the most common neurological disorders. An electroencephalo-
gram (EEG) signal is used to detect epilepsy because this signal reflects the elec-
trical activity of the brain which has been related to this condition. Epilepsy is
characterized by recurrent peaks in the EEG signal. In this section we consider
two sets of EEG data (Andrzejak, Lehnertz, Mormann, Rieke, David, and Elger,
2001) corresponding to normal and epileptic subjects. Each set contains 100 sin-
gle channel EEG segments of 23.6 seconds in duration, with T = 4,096 times of
observation. The segments were selected and cut from multichannel records that
were collected after a visual inspection of artifacts such as muscle activity or eye
movement. Figure 2 shows fragments of 6 seconds from signals from an epilep-
tic condition (a) and from a normal condition (b). The corresponding estimates
of the spectral distribution functions using the method described in Section 3 are
also shown (c and d). It can be seen that the spectral distribution for the normal
record contains atoms with positive mass (signals with more regularities). In order
to compare the three classifiers, we used the procedure described next:

1. The set of 200 EEG records was randomly split into two subsets: 60% of the
signals (120) were used to build classifiers using each of the three methods.
Classification error rates were obtained from the remaining 40% of the signals
(80).

2. Step 1 was iterated 100 times.
3. The obtained misclassification rates were summarized as medians, interquar-

tile ranges and maximums.

The results are shown in Table 3.

Table 3: EEG signals: misclassification rates.

Kullback-Leibler ANN LogitBoost
Median (IQR) Max Median (IQR) Max Median (IQR) Max
25.0 (20.0 ; 30.0) 38.7 6.2 (5.0 ; 7.5) 11.2 3.7 (2.5 ; 5.0) 8.7
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6 Discussion
The papers on classifiers based on Kullback-Leibler divergence (KL) assume that
the time series are generated within each group by the same Gaussian linear pro-
cess. Such an assumption has been considered in the three first scenarios of the
simulation study. In the first scenario, as can be seen in Table 2, the 200 time se-
ries were correctly classified by the method used by Vilar and Pértega (2004). This
classifier appears superior to those based on ANN and LogitBoost, possibly because
it uses more effectively the conditions of linearity, Gaussianity and homogeneity.
The introduction of intra-class heterogeneity in the second scenario significantly
increases the misclassification rates of the classifier based on KL (the median of
errors increases from 0% to 10.0%) while those based on the ANN and LogitBoost
moderately increase, being similar those of the latter two. The contamination by a
5% of outliers under the third scenario tends to increase the misclassification rates
of all procedures, but without doubt the most robust is the LogitBoost. The greater
robustness of procedures based on decision trees versus neural networks has already
been pointed out by Hastie et al. (2001, p. 313). In these three scenarios there are
no discrete components, so ANN and LogitBoost do no use more information that
KL does.

In practice it is often unrealistic to assume that actual biomedical signals
are generated by processes with absolutely continuous spectral distribution. This
is what occurs with the EEG signals described in 5.2, in most of which atoms are
found (fig 2). Therefore, in scenarios 4 and 5 we have considered signals gener-
ated by processes with mixed spectra. It can be seen that the misclassification rates
corresponding to the ANN and LogitBoost are similar and significantly lower than
those obtained for the KL procedure. This is just what one would expect since KL
can not use the information on the mixed spectrum. The differences in the observed
error rates show the improvement achieved when the classification method ade-
quately models the spectrum of the signal. In the fourth scenario, the highest rates
of error are 7.0% for ANN and 6.5% for LogitBoost. The introduction of outliers on
stage 5 increased the maximum error to 13.5% for the ANN and 9% for the Logit-
Boost. This result seems to confirm the greater robustness of LogitBoost compared
to neural networks methods. In the analysis of the EEG, the high error rates for the
KL method are undoubtedly attributable to the discrepancy between the series char-
acteristics and the assumptions of this classification model. The lower classification
error of LogitBoost with respect to ANN (maximum error rate of 11.2% for ANN
compared to 8.7% for LogitBoost) could be attributed to neural networks being less
robust to the presence of outliers.
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Figure 2: EEG signals corresponding to an epileptic subject (a) and to a normal subject (b)
and their corresponding spectral distribution functions (c) and (d).

In practice, it is usually unknown if the true spectrum of the signals is mixed
or absolutely continuous. In such conditions it is advisable that the classification
method try to extract all the available information in the signals. For these reason,
we recommend assuming that the signals are generated by mixed spectra, summa-
rizing the spectral estimation in a feature as given in (7) and constructing a classifier
based on the logitboost procedure.
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Appendix: Details of the spectral estimation
The representation (4) for each periodogram Ia

(
ω j
)

determines a likelihood func-
tion la, which depends on the spectral density function fa (λ ) and spectrum line
da (λ ). According to Kooperberg et al. (1995), we parametrically model these func-
tions by means of cubic splines as follows:

1. For the spectral density, set log fa (λ ) = ∑KC
k=1 βkBk (λ ), where {B1, . . . ,BKC}

is a base for the space of twice continuously differentiable functions s(λ ) on
[0,π] such that the restriction of s(λ ) to each of the intervals [τk−1,τk] of a
certain partition 0 ≤ τ1 < .. . < τKc ≤ π is a cubic polynomial, and moreover
where the first and third derivatives of s(λ ) are equal to zero at 0 and π .

2. For the spectrum line, we consider Bk+KC (λ ) = δνk (λ ) for 1≤ k ≤Kd , where
Kd is a nonnegative integer, δν(·) is the indicator function and ν1 < .. . < νKd

is a sequence of Fourier frequencies. The mean function is then modelled as
logga (λ ) = ∑KC+Kd

k=1 βkBk (λ )

It is easy to deduce that da (λ ) = 2π
T fa (λ )

[
exp
(

∑KC+Kd
k=KC+1 βkBk (λ )

)
−1
]
. There-

fore, for any object a ∈ A, the log-likelihood (omitting constants) takes on the form:

la (β ) = ∑ j

{
δπ
(
ω j
)

2
−1

}[
KC+Kd

∑
k=1

βkBk
(
ω j
)
+ Ia

(
ω j
)

exp

{
KC+Kd

∑
k=1

βkBk
(
ω j
)}]

The maximum likelihood estimate β̂a is given as usual by la
(

β̂a

)
= maxβ la (β ).

From the maximum likelihood estimates f̂a (λ ) and d̂a (λ ), we obtained F̂a (λ ) us-
ing (2). The procedure for the selection of nodes is documented in Kooperberg et al.
(1995).
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Ahdesmäki, M., H. Lähdesmäki, R. Pearson, H. Huttunen, and O. Yli-Harja (2005):

“Robust detection of periodic time series measured from biological systems.”
BMC Bioinformatics, 6, 6:117.

Alagon, J. (1989): “Spectral discrimination for two groups of time series.” Journal
of Time Series, 10, 203–214.

15

Saavedra et al.: Classification of Stationary Signals with Mixed Spectrum

Brought to you by | Universidad de Las Palmas de Gran Canaria. ULPGC
Authenticated

Download Date | 7/3/19 7:15 PM



¨

Andrzejak, R. G., K. Lehnertz, F. Mormann, C. Rieke, P. David, and C. E. Elger
(2001): “Indications of nonlinear deterministic and finite-dimensional structures
in time series of brain electrical activity: dependence on recording region and
brain state.” Physical review. E, Statistical, nonlinear, and soft matter physics,
64.

Ben-Dor, A., L. Bruhn, N. Friedman, I. Nachman, M. Schummer, and Z. Yakhini
(2000): “Tissue classification with gene expression profiles.” Journal of Compu-
tational Biology, 7, 559–583.

Bhansali, R. J. (1970): “A mixed spectrum analysis of the lynx data.” Journal of the
Royal Statistical Society, 199–209.

Breiman, L., J. Friedman, C. J. Stone, and R. A. Olshen (1984): Classification and
Regression Trees, Chapman & Hall/CRC.

Brillinger, D. R. (1981): Time Series: Data Analysis and Theory (Classics in Ap-
plied Mathematics, 36), Holden Day, San Francisco.

Buhlman, P. (2006): “Boosting for high-dimensional linear models.” Annals of
Statistics, 559–583.

Chinipardaz, R. and T. Cox (2004): “Nonparametric discrimination of time series.”
Metrika, 13–20.

Dettling, M. and P. Buhlmann (2003): “Boosting for tumor classification with gene
expression data,” Bioinformatics, 19, 1061–1069.

Diggle, P. and I. Al-Wasel (1993): “On periodogram-based spectral estimation for
replicated time series,” in Subba Rao, ed., Developments in Time Series Analysis.,
Chapman and Hall, 341–354.

Diggle, P. and I. Al-Wasel (1997): “Spectral analysis of replicated biomedical time
series,” Applied Statistics, 31–71.

Dudoit, S., J. Fridlyand, and T. P. Speed (2002): “Comparison of discrimination
methods for the classification of tumors using gene expression data,” Journal of
the American Statistical Association, 97, 77–87.

Freund, Y. and R. Schapire (1996): “Experiments with a new boosting algorithm,”
in Proceedings of the Thirteenth International Conference on Machine Learning
(ICML), 148–156.

Friedman, J., T. Hastie, and R. Tibshirani (2000): “Additive logistic regression: a
statistical view of boosting,” Annals of Statistics, 28, 337–407.

Hastie, T., R. Tibshirani, and J. H. Friedman (2001): The Elements of Statistical
Learning, New York: Springer.

Hernández-Flores, C., J. Artiles-Romero, and P. Saavedra-Santana (1999): “Esti-
mation of the population spectrum with replicated time series.” Computational
Statistics and Data Analysis, 271–280.

16

The International Journal of Biostatistics, Vol. 7 [2011], Iss. 1, Art. 7

DOI: 10.2202/1557-4679.1288

Brought to you by | Universidad de Las Palmas de Gran Canaria. ULPGC
Authenticated

Download Date | 7/3/19 7:15 PM



Kakizawa, Y., R. Shumway, and M. Taniguchi (1998): “Discrimination and cluster-
ing for multivariate time series.” Journal of the American Statistical Association,
328–340.

Kooperberg, C., C. Stone, and Y. Truong (1995): “Logspline estimation of a possi-
bly mixed spectral distribution.” Journal of Time Series Analysis, 259–388.

Luengo, I., C. Hernández, and P. Saavedra (2006): “Test to compare two population
logspectra,” Computational Statistics, 91–101.

Pander, T. (2008): Information Technologies in Biomedicine, Advances in Soft Com-
puting, Springer-Verlag, volume 47, chapter An Application of Robust Kernel-
Based Filtering of Biomedical Signals, 259–266.

Pardey, J., S. Roberts, and L. Tarassenko (1996): “A review of parametric modelling
techniques for eeg analysis.” Med Eng Phys, 18, 2–11.

R Development Core Team (2010): R: A Language and Environment for Statisti-
cal Computing, R Foundation for Statistical Computing, Vienna, Austria, URL
http://www.R-project.org, ISBN 3-900051-07-0.

Ripley, B. D. (1996): Pattern Recognition and Neural Networks, Cambridge Uni-
versity Press.

Saavedra, P., C. Hernández, and J. Artiles (2000): “Spectral analysis with replicated
time series.” Communications in Statistics: theory and methods, 2343–2362.

Saavedra, P., C. Hernández, I. Luengo, J. Artiles, and A. Santana (2008): “Estima-
tion of the population spectrum for linear processes with random coefficients.”
Computational Statistics, 79–98.

Schalkoff, R. (1997): Artificial neural networks, McGraw-Hill, New York.
Shumway, R. and A. Unger (1974): “Linear discriminant functions for stationary

time series,” Journal of the American Statistical Association, 948–956.
Vilar, J. and S. Pértega (2004): “Linear discriminant functions for stationary time

series.: local linear fitting approach,” Journal of Nonparametric Statistics, 443–
462.

17

Saavedra et al.: Classification of Stationary Signals with Mixed Spectrum

Brought to you by | Universidad de Las Palmas de Gran Canaria. ULPGC
Authenticated

Download Date | 7/3/19 7:15 PM


	The International Journal of Biostatistics
	Classification of Stationary Signals with Mixed Spectrum
	Classification of Stationary Signals with Mixed Spectrum
	Abstract




