Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/45494
Título: | On-line signature recognition through the combination of real dynamic data and synthetically generated static data | Autores/as: | Galbally, Javier Diaz-Cabrera, Moises Ferrer, Miguel A. Gomez-Barrero, Marta Morales, Aythami Fierrez, Julian |
Palabras clave: | On-line signature verification On-line and off-line signature fusion Off-line signature verification Biometric performance evaluation Signature synthesis |
Fecha de publicación: | 2015 | Editor/a: | 0031-3203 | Publicación seriada: | Pattern Recognition | Resumen: | On-line signature verification still remains a challenging task within biometrics. Due to their behavioural nature (opposed to anatomic biometric traits), signatures present a notable variability even between successive realizations. This leads to higher error rates than other largely used modalities such as iris or fingerprints and is one of the main reasons for the relatively slow deployment of this technology. As a step towards the improvement of signature recognition accuracy, the present paper explores and evaluates a novel approach that takes advantage of the performance boost that can be reached through the fusion of on-line and off-line signatures. In order to exploit the complementarity of the two modalities, we propose a method for the generation of enhanced synthetic static samples from on-line data. Such synthetic off-line signatures are used on a new on-line signature recognition architecture based on the combination of both types of data: real on-line samples and artificial off-line signatures synthesized from the real data. The new on-line recognition approach is evaluated on a public benchmark containing both real versions (on-line and off-line) of the exactly same signatures. Different findings and conclusions are drawn regarding the discriminative power of on-line and off-line signatures and of their potential combination both in the random and skilled impostors scenarios. (C) 2015 Elsevier Ltd. All rights reserved. | URI: | http://hdl.handle.net/10553/45494 | ISSN: | 0031-3203 | DOI: | 10.1016/j.patcog.2015.03.019 | Fuente: | Pattern Recognition[ISSN 0031-3203],v. 48, p. 2921-2934 |
Colección: | Artículos |
Citas SCOPUSTM
105
actualizado el 17-nov-2024
Citas de WEB OF SCIENCETM
Citations
95
actualizado el 17-nov-2024
Visitas
79
actualizado el 31-oct-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.