Please use this identifier to cite or link to this item:
Title: On-line signature recognition through the combination of real dynamic data and synthetically generated static data
Authors: Galbally, Javier
Diaz-Cabrera, Moises 
Ferrer, Miguel A. 
Gomez-Barrero, Marta
Morales, Aythami
Fierrez, Julian
Keywords: On-line signature verification
On-line and off-line signature fusion
Off-line signature verification
Biometric performance evaluation
Signature synthesis
Issue Date: 2015
Publisher: 0031-3203
Journal: Pattern Recognition 
Abstract: On-line signature verification still remains a challenging task within biometrics. Due to their behavioural nature (opposed to anatomic biometric traits), signatures present a notable variability even between successive realizations. This leads to higher error rates than other largely used modalities such as iris or fingerprints and is one of the main reasons for the relatively slow deployment of this technology. As a step towards the improvement of signature recognition accuracy, the present paper explores and evaluates a novel approach that takes advantage of the performance boost that can be reached through the fusion of on-line and off-line signatures. In order to exploit the complementarity of the two modalities, we propose a method for the generation of enhanced synthetic static samples from on-line data. Such synthetic off-line signatures are used on a new on-line signature recognition architecture based on the combination of both types of data: real on-line samples and artificial off-line signatures synthesized from the real data. The new on-line recognition approach is evaluated on a public benchmark containing both real versions (on-line and off-line) of the exactly same signatures. Different findings and conclusions are drawn regarding the discriminative power of on-line and off-line signatures and of their potential combination both in the random and skilled impostors scenarios. (C) 2015 Elsevier Ltd. All rights reserved.
ISSN: 0031-3203
DOI: 10.1016/j.patcog.2015.03.019
Source: Pattern Recognition[ISSN 0031-3203],v. 48, p. 2921-2934
Appears in Collections:Artículos
Show full item record


checked on May 9, 2021


checked on May 9, 2021

Page view(s)

checked on May 9, 2021

Google ScholarTM




Export metadata

Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.