Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/16340
Título: | Multithread parallelization of lepp-bisection algorithms | Autores/as: | Rivara, María Cecilia Rodríguez Moreno, Pedro Montenegro, Rafael Jorquera, Gastón |
Clasificación UNESCO: | 12 Matemáticas 120601 Construcción de algoritmos 1204 Geometría 1206 Análisis numérico |
Palabras clave: | Longest edge bisection Triangulation refinement Lepp-bisection algorithm Parallel multithread refinement Parallel lepp-bisection algorithm, et al. |
Fecha de publicación: | 2012 | Publicación seriada: | Applied Numerical Mathematics | Resumen: | Longest edge (nested) algorithms for triangulation refinement in two dimensions are able to produce hierarchies of quality and nested irregular triangulations as needed both for adaptive finite element methods and for multigrid methods. They can be formulated in terms of the longest edge propagation path (Lepp) and terminal edge concepts, to refine the target triangles and some related neighbors. We discuss a parallel multithread algorithm, where every thread is in charge of refining a triangle t and its associated Lepp neighbors. The thread manages a changing Lepp(t) (ordered set of increasing triangles) both to find a last longest (terminal) edge and to refine the pair of triangles sharing this edge... | URI: | http://hdl.handle.net/10553/16340 | ISSN: | 0168-9274 | DOI: | 10.1016/j.apnum.2011.07.011 | Fuente: | Applied Numerical Mathematics [ISSN 0168-9274], v. 62 (4), p. 473-488 | Derechos: | by-nc-nd |
Colección: | Actas de congresos |
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.