
 Elsevier Editorial System(tm) for Applied Numerical Mathematics
 Manuscript Draft

Manuscript Number: APNUM-D-10-00228R2

Title: Multithread parallelization of lepp-bisection algorithms

Article Type: Special Issue - WONAPDE 2010

Keywords: Longest edge bisection, Triangulation refinement, Lepp-bisection algorithm, Parallel
multithread refinement, Parallel lepp-bisection algorithm, Finite element method

Corresponding Author: Maria-Cecilia Rivara, Ph.D.

Corresponding Author's Institution: Universidad de Chile

First Author: Maria-Cecilia Rivara, Ph.D.

Order of Authors: Maria-Cecilia Rivara, Ph.D.; Pedro Rodriguez; Rafael Montenegro, Ph.D.; Gaston
Jorquera

Manuscript Region of Origin: CHILE

Abstract: Abstract
Longest edge (nested) algorithms for triangulation refinement in two dimensions are able to produce
hierarchies of quality and nested irregular triangulations as needed both for adaptive finite element
methods and for multigrid methods. They can be formulated in terms of the longest edge propagation
path (Lepp) and terminal edge concepts, to refine the target triangles and some related neighbors. We
discuss a parallel multithread algorithm, where every thread is in charge of refining a triangle t and its
associated Lepp neighbors. The thread manages a changing Lepp(t) (ordered set of increasing
triangles) both to find a last longest (terminal) edge and to refine the pair of triangles sharing this edge.
The process is repeated until triangle t is destroyed. We discuss the algorithm, related synchronization
issues, and the properties inherited from the serial algorithm. We present an empirical study that
shows that a reasonably efficient parallel method with good scalability was obtained.

Multithread parallelization of lepp-bisection algorithms

Maria-Cecilia Rivaraa, Pedro Rodrigueza,b, Rafael Montenegroc, Gaston
Jorqueraa

aDepartment of Computer Science, University of Chile, Santiago, Chile
bDepartment of Information Systems, University of Bio-Bio, Concepción, Chile

cUniversity of Las Palmas de Gran Canaria, University Institute for Intelligent Systems

and Numerical Applications for Engineering, Spain

Abstract

Longest edge (nested) algorithms for triangulation refinement in two dimensions
are able to produce hierarchies of quality and nested irregular triangulations as
needed both for adaptive finite element methods and for multigrid methods.
They can be formulated in terms of the longest edge propagation path (Lepp)
and terminal edge concepts, to refine the target triangles and some related
neighbors. We discuss a parallel multithread algorithm, where every thread is
in charge of refining a triangle t and its associated Lepp neighbors. The thread
manages a changing Lepp(t) (ordered set of increasing triangles) both to find
a last longest (terminal) edge and to refine the pair of triangles sharing this
edge. The process is repeated until triangle t is destroyed. We discuss the
algorithm, related synchronization issues, and the properties inherited from the
serial algorithm. We present an empirical study that shows that a reasonably
efficient parallel method with good scalability was obtained.

Keywords:
Longest Edge Bisection, Triangulation Refinement, Parallel Multithread
Refinement, Lepp-bisection Algorithm, Finite Element Method

1. Introduction

Triangular mesh generation for finite element methods has been extensively
studied and addressed by engineers and numerical analysts since the seventies.
Finite element methods are widely used numerical techniques for the practical
analysis of complex physical problems modeled by partial differential equations,
which require appropriate discretizations of the associated geometries. Because
of their flexibility, triangulations are preferred practical tools. Pioneer works on
triangulations for finite element methods and related issues are due to Babuska

Email addresses: mcrivara@dcc.uchile.cl (Maria-Cecilia Rivara),
prodrigu@dcc.uchile.cl (Pedro Rodriguez), rafa@dma.ulpg.es (Rafael Montenegro),
gjorquera@dcc.uchile.cl (Gaston Jorquera)

Preprint submitted to Elsevier July 14, 2011

*Manuscript
Click here to view linked References

http://ees.elsevier.com/apnum/viewRCResults.aspx?pdf=1&docID=2995&rev=2&fileID=59454&msid={5F26825E-A361-46C7-A4DD-477DFFF4F78E}

and Aziz [4], Lawson [27], Sibson [51]. Since then, intensive research on practical
mesh generation has been performed. See e.g. the papers of Baker [6, 7], Bouraki
and George [9], Jones and Plassmann [23, 24], Williams [55].

Computational methods for generating and refining triangular and tetra-
hedral finite element meshes in 2 and 3-dimensions can be roughly classified
as Delaunay based methods, [6, 19, 7, 17, 50, 47] and methods based on the
partition of triangles and tetrahedra [39, 33, 34, 28].

Longest edge refinement algorithms for triangulations, based on the longest
edge bisection of triangles (obtained by joining the midpoint of the longest edge
with the opposite vertex) were especially designed to deal with adaptive multi-
grid finite element methods [33, 34, 35, 36]. They are able to perform iterative
local refinement by essentially maintaining the geometric quality of the input
mesh as needed in finite element applications; they produce hierarchies of qual-
ity, smooth and nested irregular triangulations as required for non-structured
multigrid methods. The properties of these algorithms are inherited from the
non-degeneracy properties of the iterative longest edge bisection of triangles,
[45, 52, 53, 1, 21] and are summarized in section 2.2.

The longest edge algorithms were generalized for 3-dimensional mesh refine-
ment [38, 30], as well as for the derefinement or coarsening of the mesh [37].
Improved longest edge algorithms based on using the concepts of terminal edges
and longest edge propagating paths were also developed [40, 39, 43]. The algo-
rithms have been used for developing software for partial differential equations.
See e.g. the applications of Nambiar et al [31], Muthukrishnan et al. [30]. Based
on the longest edge idea over Delaunay meshes, Lepp-Delaunay algorithms for
triangulation improvement have been also developed [39, 41, 44]

2. Longest edge refinement algorithms in 2-dimensions.

Roughly speaking the problem is the following: given a conforming, non-
degenerate triangulation, construct a locally refined triangulation, with a desired
resolution and such that the smallest (or the largest angle) is bounded. To sim-
plify we introduce a subregion R to define the refinement area; and a condition
over the longest-edge of the triangles to fix the desired resolution. We can
consider the following subproblems:

Area Refinement. Given a quality acceptable triangulation (a triangu-
lation with angles greater than or equal to an angle α) of a polygonal region
D, construct a locally refined triangulation such that the longest edge of the
triangles that intersect the refinement region R are less than δ.

Point / Edge Refinement. Here the refinement is performed around one
vertex or along a boundary side, until all the triangles that intersect the vertex
or the boundary edge are less than δ.

Adaptive finite element refinement. In the adaptive finite element con-
text, the refinement region is repeatedly defined as a subset of triangles Sref

of the current triangulation (not necessarily connected) where the error of the
finite element solution is too big to be acceptable [36].

2

Given the input mesh, the algorithm locally and iteratively refines the tri-
angles of a changing Sref set (or those intersecting the refinement region R)
and some neighboring triangles. The new points introduced in the mesh are
midpoints of the longest edge of some triangles of either of the input mesh or of
some refined nested meshes. The longest edge bisection guarantees in a natu-
ral way the construction of non-degenerate and smooth irregular triangulations
whose geometrical properties only depend on the initial mesh. In practice, for
adaptive triangulation refinement, at each step longest-edge algorithms produce
a refined conforming and guaranteed-quality output triangulation by perform-
ing selective longest edge bisection of the triangles of Sref and some (longest
edge) related neighbors.

2.1. A serial Lepp-bisection algorithm

An edge E is called a terminal edge in triangulation τ if E is the longest
edge of every triangle that shares E, while the triangles that share E are called
terminal triangles [39, 40]. Note that in 2-dimensions either E is shared by two
terminal triangles t1, t2 if E is an interior edge, or E is contained in a single
terminal triangle t1 if E is a boundary (constrained) edge. See Figure 1(a) where
edge AB is an interior terminal edge shared by two terminal triangles t2, t3.

For any triangle t0 in τ , the longest edge propagating path of t0, called
Lepp(t0), is the ordered sequence {tj}

N+1
0 , where tj is the neighbor triangle on

a longest edge of tj−1, and longest-edge (tj) > longest-edge (tj−1), for j=1,... N.
Edge E = longest-edge(tN+1) = longest-edge(tN) is an interior terminal edge in
τ and this condition determines N . Consequently either E is shared by a couple
of terminal triangles (tN , tN+1) if E is an interior edge in τ , or E is shared by
a unique terminal triangle tN with boundary (constrained) longest edge. See
Figure 1(a) for an illustration of these ideas, where Lepp(t0)=(t0, t1, t2, t3).

The Lepp-bisection algorithm can be simply described as follows: each trian-
gle t in Sref is refined by finding Lepp(t), a pair of terminal triangles t1, t2 and
associated terminal edge l. Then the longest edge bisection of t1, t2 is performed
by the midpoint of l. The process is repeated until t is destroyed (refined) in
the mesh. An efficient formulation of the algorithm where Lepp(t0) is not re-
peatedly recomputed, but repeatedly updated starting from the non-modified
part of the previous Lepp(t0), is presented below. To this end we use a dynamic
ordered list that stores pointers to the increasing triangles of (partial and full)
Lepp(t0), while t0 remains in the changing mesh. This will be the basis to
develop a parallel algorithm in section 4.

Lepp-Bisection Algorithm
Input : a quality triangulation, τ , and a set Sref of triangles to be refined
for each t in Sref do
Insert-Lepp-Points(τ, t)

end for

Insert-Lepp-Points(τ, t0)
Initialize Ordered-List (associated dynamically to Lepp(t0)) with t0

3

while Ordered-List is not empty do
Find last triangle tN in Ordered-List
Find longest edge neighbor tN+1 of tN and add it to Ordered-List (tN+1

can be null if longest edge of tN is over the boundary)
if tN , tN+1 share a terminal edge or tN+1 is null then
Perform longest-edge bisection of tN , tN+1 by midpoint of common ter-
minal edge
Eliminate tN , tN+1 from Ordered-List

end if
end while

Note that the refinement task is performed when each Lepp(t0) is fully com-
puted and a terminal edge is identified, by using a very local refinement oper-
ation (the bisection of pairs of terminal triangles that share a common longest
edge). This guarantees that the mesh is conforming throughout the whole re-
finement process. This improves previous longest edge algorithms [34] that
produced intermediate non-conforming meshes. Also the algorithm is free of
non-robustness issues, since this do not depend of complex computations, and
the selected points are midpoints of existing previous edges.

Figure 1 illustrates the refinement of triangle t0 in the input triangulation
(a). Triangulation (b) shows the first point inserted, while triangulation (c)
corresponds to the final triangulation obtained where the vertices are numbered
in the creation order. In order to achieve this work, the full Lepp computation
is performed three times to respectively insert points P1, P2, P3. The first Lepp
computation includes triangles t0, t1, t2, t3, being t2, t3 terminal triangles. Once
the refinement of these triangles is performed, Lepp(t0) is partially recomputed
starting from t1 (Figure 1(b)). This now includes triangles t0, t1, t̃2 being t1, t̃2
terminal triangles, which are then refined. This time the new Lepp (t0) com-
putation starts from t0 and includes t0, t̃1 which are in turn terminal triangles.
The processing of t0 concludes after refinement of t0, t̃1.

t0

t2

t3

t1 B

A

(a)

t0

t2

t1 B

A

(b)

1

(c)

1
2

3

~

Figure 1: (a) Lepp(t0) = {t0, t1, t2, t3} and AB is terminal edge; (b) For refining triangle t, a
first vertex 1 is added by bisection of the terminal triangles sharingAB. (c) Final triangulation
obtained for refining t.

4

2.2. Properties of the 2-dimensional refinement algorithms

The non-degeneracy properties of the longest edge algorithms are summa-
rized in lemmas 1 to 4 [21, 43]

Lemma 1 (a) The iterative and arbitrary use of the algorithms only produces
triangles whose smallest interior angles are always greater than or equal to α/2,
where α is the smallest interior angle of the initial triangulation. Also every
triangle generated is similar to one of a finite number of reference triangles. (b)
Furthermore, for any triangle t generated throughout the refinement process, its
smallest angle αt is greater than or equal to α0/2 where α0 is the smallest angle
of the triangle t0 of the initial triangulation which contains t. Also t belongs to
a finite number of similar triangles associated to t0.

Lemma 2 Longest-edge refinement algorithms always terminate in a finite num-
ber of steps with the construction of a conforming triangulation.

Lemma 3 Any triangulation τ generated by means of the iterative use of the
algorithms satisfies the following smoothness condition: for any pair of side-
adjacent triangles t1, t2 ∈ τ (with respective diameters h1, h2) it holds that
min(h1,h2)
max(h1,h2)

≥ k > 0, where k depends on the smallest angle of the initial tri-

angulation.

Lemma 4 For any triangulation τ , the global iterative application of the algo-
rithm (the refinement of all the triangles in the preceding iteration) covers, in
a monotonically increasing form, the area of τ with quasi-equilateral triangles
(with smallest angles ≥ 30◦).

The proof of Lemma 2 is based both on the fact that the refinement propa-
gation is always performed towards bigger triangles in the current mesh, and on
the fact that every mesh has bounded smallest angle. The smoothness property
of Lemma 3 follows directly from the bound on the smallest angle of part (a) of
Lemma 1. Lemma 4 states that the algorithm tends to isolate the worst angles.

2.3. Algorithm costs in two dimensions

The practical (adaptive) use of the refinement algorithm, requires of a num-
ber of K refinement iterations which produces a final refined mesh having a not
a-priori known number of vertices N = Nref +Nprop, where Nref is the number
of triangles iteratively marked for triangle refinement and Nprop is the sum of
the number of points introduced by refinement propagation throughout the K
iterations [43]. Thus the cost study requires of an amortized cost analysis [54]
based on asymptotically studying the behavior of the algorithm throughout the
refinement iterations, instead of the classical worst case study [29]. The amor-
tized cost analysis must take into account the fact that, in one iteration the
algorithm can introduce propagation points over all the triangles of the mesh
(usually when the mesh is small), while for the remaining iterations a very small
number of propagation points is introduced by each iteration.

5

To illustrate these ideas consider the mesh of Figure 2(a), where the single
longest edge refinement of one triangle (triangle ABC) reaches the complete
mesh as shown in Figure 2(b), which corresponds to a worst case behavior
for a single refinement step. More importantly, note that after this step, the
arbitrary iterative refinement of the triangles of vertex C, produces a very local
refinement (1 or 2 vertices by refinement step) that approaches vertex C. Figure
2(c) shows the subtriangulation ADBC obtained after 4 iterative refinement of
the triangles of vertex C.

C B

A

(a) (b) (c)
A D

BBC C

A
D

Figure 2: (a) Initial triangulation; (b) Refinement of triangle ABC reaches the complete
mesh in one refinement step; (c) Further refinement around C is very local (triangulation
detail ADBC)

Thus the iterative refinement of sets of target triangles introduces both a
number Nref of new vertices mandatorily generated to get the required triangle
size, and a number Nprop of new propagation vertices which are introduced to
keep the geometric quality and the smoothness of the refined mesh, as stated in
lemmas 1 and 3.

We need: (1) To bound the numbers Nref andNprop, of new vertices inserted
in the mesh; and (2) To study the computational cost of inserting them. The
following lemma deals with the second item, which is a non obvious result since
an algorithm can be able to select an optimal number of points K for point
insertion, but the cost of inserting them can be higher than linear as happens
with Delaunay point insertion strategy.

Lemma 5 Consider any mesh M1 obtained by iterative application of the Lepp-
bisection algorithm over an initial mesh M0, implying the introduction of K new
vertices. Then the computational cost of finding and inserting the K vertices is
linear in K, independently of the size of the triangulations and the number of
iterations performed.

The proof of this lemma follows directly from the fact that each triangle is
added one time to the Ordered-List of the Insert-Lepp-Points function, and that
the triangle refinement is performed in constant time.

6

Bounds on the number of pointsNref andNprop introduced by the algorithm,
as a function of L, the longest interior distance in the geometry D, and the
required triangle size δ, are presented in Lemmas 6, 7, 8. We will consider the
following two simple problems:

(P1) Vertex refinement problem: Iteratively refine the mesh around a
vertex Q until the adjacent triangles have longest edge less than or equal to a
length parameter δ.

(P2) Circle area refinement: Iteratively refine the triangles that intersect
a circular region Rc until every triangle in Rc has longest edge less than or equal
to a length parameter δ.

Lemma 6 For solving (P1), a finite number of points N is added to the mesh,
by longest edge bisection of pairs of terminal triangles, where N < K(Log(L/δ)),
K is a constant such that K = 2π/α, and L is the longest interior distance in
the polygonal geometry D measured over the smallest rectangle that contains D.

The following lemma states that, for a big enough refinement area and for
small δ, the number of propagation vertices is smaller than the number of ver-
tices needed to get the desired mesh refinement.

Lemma 7 For solving (P2), finite number of points Ni and Ne need to be
respectively added in the interior and the exterior of Rc where

Ni < K1((
r
δ
)2), Ne < K2(

r
δ
)Log(L

δ
), L is equal to the longest distance from

the boundary of Rc to the boundary of D, r is the radius of Rc, and the constants
are K1 = 4π and K2 = 2π.

Lemma 8 (a) For solving (P1), the algorithm is linear in N defined in Lemma
6. (b) For solving (P2), the algorithm is linear in (Ni + Ne), the number of
points inserted in the mesh. In addition if r >> δ, then the algorithm is linear
in Ni.

3. Previous results on parallel refinement algorithms

Distributed memory parallel algorithms for the refinement of huge meshes
have been studied and used for complex practical applications for the last 20
years [55, 13, 23]. They are mainly based on the partition of basic geometric
elements which produce nested refined meshes: algorithms based on the longest
edge bisection of triangles / tetrahedra, or algorithms based on quadtree / octree
techniques [48, 49]. As far as we know, parallel Delaunay algorithms have not
been used in practice, because the serial Delaunay algorithms are less robust
and more difficult to parallelize. However, research on the study of different
aspects of parallel Delaunay methods, centered in the reuse of serial Delaunay
codes, have been performed [2, 3, 15, 16] in recent years.

Distributed memory algorithms are based on partitioning the mesh and dis-
tributing its pieces to the computers of the cluster. To develop efficient and
scalable distributed memory algorithms for mesh refinement, it is necessary to

7

deal with the following issues: (a) to use efficient methods for mesh partitioning
and related strategies such as dynamic mesh redistribution to equilibrate the
load between processors throughout the computations; (b) to develop wise and
efficient strategies for assuring coherent mesh refinement in the submeshes in-
terfaces; and (c) to develop efficient methods for the movement of information
between processors, which should be minimized.

The development of distributed parallel longest edge algorithms for the par-
allel refinement of triangulations have been studied and used for complex prac-
tical applications related with finite element methods. In a first review paper,
Williams [55] recommends the use of parallel 4-triangles longest edge algorithm
for the refinement of huge triangulations, for fluid dynamics applications. Later
Jones and Plassmann [23, 24, 22] discussed parallel 4-triangles refinement al-
gorithms for distributed memory finite element computations. They find in-
dependent sets of triangles to ensure that neighboring triangles are never si-
multaneously refined on different processors. The independent sets are chosen
in parallel by a randomized strategy. A technique that dynamically reparti-
tions the mesh to maintain adequate load distribution, which require to move
triangles between processors, is also used. More recently Castaños and Savage
[12, 14, 13] proposed a distributed memory parallelization of the original longest
edge algorithm in 3-dimensions, and use this method for developing a parallel
finite element code; they use a tree data structure to allow the refinement and
derefinement of the meshes. Finally, Rivara et al [42] studied a Lepp-based
algorithm for uniform refinement of tetrahedral meshes.

4. Multithread Lepp-bisection algorithm

In what follows we discuss a shared memory multithread algorithm that
takes advantage both of the properties of the Lepp-bisection algorithm, and of
the current multicore computers, which have several cores (light processors that
perform the reading and instructions execution tasks) and dispose of a great
amount of available memory to deal with big meshes.

To discuss the multithread Lepp-bisection algorithm, consider one step of
the (adaptive finite element) refinement problem introduced in section 2. Given
an input triangulation τ and a set S ⊂ τ of N triangles to be refined, we want to
produce a conforming refined triangulation τf such that all the triangles of S are
refined in τf . To this end we use a shared memory multicore computer having
p physical cores with p << N . To perform this task each core Pi(i = 1, ..p) is
in charge of the processing of an individual triangle t in S and its associated
changing Lepp sequence until the triangle t is refined in the mesh. Once the
refinement of t is performed, the associated core will pick up another triangle
of S to continue the refinement task.

To design the multithread algorithm, we need to deal with the following
synchronization problems:

S1 To avoid processing collisions associated to the parallel processing of tri-
angles whose Lepp polygons overlap.

8

S2 To avoid data structure inconsistencies due to the parallel refinement of
adjacent triangles that belong to different pairs of terminal triangles.

Problem S1 refers to the case where for different triangles t0, t
∗

0 in S, their
associated Lepp sequences overlap. Figure 3 illustrates the idea to avoid Lepp
collision: cores 1 and 2 are respectively processing triangles t0 and t∗0 which
have overlapping Lepp sequences Lepp(t0) ∩ Lepp(t∗) = {t2, t3, t4, t5}; core 1
reaches first triangle t2, marks it as “busy” and proceeds to capture the full
associated Lepp(t0), while core 2 processing triangle t∗0 must suspend its work
when marked triangle t2 is reached.

To deal with overlapping Lepps, the algorithm takes advantage of the fol-
lowing result:

0

t1
t2

t3 t4

t5

t0
1t’

2t’
3t’

0Lepp(t)
t*0

Lepp(t*)

Figure 3: Lepp Collision: Lepp(t0) = {t0, t1, t2, t3, t4, t5} and Lepp(t∗
0
) =

{t∗, t′
1
, t′

2
, t′

3
, t2, t3, t4, t5}

Proposition 1 (a) Each triangle t0 has an associated submesh Lepp(t0) and a
unique terminal edge which is the longest edge among all the edges of the submesh
Lepp(t0). (b) Any pair of triangles t0, t1 such that Lepp(t0)

⋂
Lepp(t1) 6= φ have

a common terminal edge. Furthermore, the smallest common triangle ts allows
to separate both involved Lepps in a full Lepp including the terminal triangles
(let say Lepp(t0)), and a partial Lepp that includes the smallest triangles of
Lepp(t1) until the predecessor of ts.

Proof. Part (a) follows directly from the definitions of Lepp and terminal edge.
Part (b) follows from the fact that every Lepp is formed by an ordered set of
increasing (longest edge) triangles. For the example of Figure 3, ts = t2

⊙

Problem S2 refers to the case where two threads attempt to refine neighbor-
ing triangles that do not belong to the same pair of terminal triangles as shown

9

in Figure 4. Here the parallel refinement of triangles t0 and t∗0, and the updating
of the data structure can introduce erroneous neighboring information. To deal
with this issue, it is not allowed to simultaneously refine neighboring triangles
associated to different cores.

t
t

tt 1 0

0
1

*
*

Figure 4: t1, t0 are terminal triangles; t∗
0
, t∗

1
are terminal triangles. Parallel refinement of

triangles t0, t
∗

0
is not allowed

Implementation details

1. To avoid Lepp processing collision, for each triangle t0 being processed, the
triangle t0 and each triangle in the sequence of Lepp triangles is marked
as Lepp-occupied, and can not be accessed by other thread until this
triangle is refined. In exchange, the new refined triangles are marked as
non-occupied.

2. For two threads p0, p1 processing in parallel triangles t0, t1 with Lepp
collision, the first thread (let say p0) that finds ts in Proposition 1, will
be in charge of performing the refinement associated to t0. The second
thread p1 will be freed instead of waiting until the triangle ts is refined.
In the case that a partial Lepp is computed, the triangles are unmarked
and the triangle t1 is again added to Sref

3. To assure data structure consistency we only perform refinement of a ter-
minal triangle when the involved neighbors are non-marked triangles.

4. If a pair of terminal triangles with marked neighbors are found, the asso-
ciated thread is freed and the complete marked Lepp is stored.

The parallel algorithm is summarized below:

Multithread-Lepp-Bisection Algorithm
Input: a quality triangulation τ , a set Sref of N triangles to be refined, p
threads (N>>p).
Output: a refined and conforming triangulation τf

10

Initialize Saux as an empty set (set of triangles whose Lepp computation was
blocked since a pair of terminal triangles with marked neighbor was found).
while Sref ∪ Saux 6= φ do
(process in parallel using the p threads)
for each free processor pi do
select one triangle t of Sref or one triangle t of Saux. Eliminate t from
Sref or Saux. Mark t as Lepp-occupied
if t belonged to Saux then
Recover associated Ordered-List (storing fully computed Lepp) from
Pending-Ordered-Lists

else
Initialize Ordered-List as an empty list

end if
Thread-Points-Insertion (τ , t, flag, Ordered-List)
if flag indicates blocked terminal triangles then
Add t to Saux, and store Ordered-List in set of Pending-Ordered-Lists

end if
if flag indicates unfinished Lepp then
Add t0 to Sref and unmark it

end if
Free thread Pi

Update Sref eliminating refined triangles
end for

end while

Thread-Points-Insertion (τ , t0, flag, Ordered-List)
if Ordered-List is empty then
initialize Ordered-List with t0

else
Find terminal triangles in Ordered-List
if terminal triangles have unmarked neighbors then
perform longest edge bisection of terminal
triangles and eliminate them from Ordered-List

else
set flag indicating blocked terminal edge and return

end if
end if
while Ordered-List is not empty do
Find last triangle tN in Ordered-List
Find longest edge neighbor tN+1 of tN
if tN+1 is Lepp-occupied then
Set flag indicating unfinished Lepp
Unmark all the triangles of Ordered-List
Return

end if
Add tN+1 to Ordered-List and mark it as Lepp occupied

11

if tN , tN+1 share a terminal edge or tN+1 is null then
if tN , tN+1 have unmarked neighbors then
Perform longest edge bisection of tN , tN+1, by
midpoint of common terminal edge
Eliminate tN , tN+1 from Ordered-List

else
set flag indicating blocked terminal edges and return

end if
end if

end while

For the parallel algorithm the following properties hold:

Lemma 9 (a) The parallel algorithm produces the same triangulations than the
serial algorithm if the refinement of triangles having more than one longest edge
is consistently performed by selecting the same longest edge. (b) The properties
described in Lemma 1 to 8 for the serial algorithm extend to the multithread
Lepp-bisection algorithm.

5. Performance measures for parallel algorithms

The performance of a parallel algorithm is usually measured by using the
speedup and the efficiency measures. The speedup S is defined as S = Ts/Tp,
where Ts is the time taken by the sequential algorithm to solve the problem,
while Tp is the time spent by the parallel algorithm by using p processors to
solve the same problem.

The efficiency E is defined as E = S/p, where S is the speedup with p pro-
cessors and p is the number of processors used to solve the associated problem.

The ideal speedup is equal to p, while the ideal efficiency is equal to 1.
Note however that in practice it is common that a parallel implementation does
not achieve linear speedup (S = p) since the parallel implementation usually
requires additional overhead for the management of parallelism [32, 20].

Note also that the scalability of the parallel code can be observed by studying
how the speedup changes as more cores are available. For an application that
scales well, the speedup should increase at (or close to) the same rate as the
amount of cores increases. That is if you double the number of cores, the
speedup should also double [11].

Thus for an ideal and scalable parallel algorithm, the graph of the speedup
versus the number of processors corresponds to a 45 degrees straight line (this
behavior is called linear), while a good and scalable behavior corresponds to an
approximate straight line with angle slightly less than 45◦.

6. Empirical testing

For the testing work we have considered the following testing problems:

12

T1. Refinement of different initial Delaunay triangulations of sets of randomly
generated data over a rectangle.

T2. Refinement of an L-shaped region around the reentrant corner to simulate
adaptive finite element refinement.

We have used a computer with 4 physical cores (Intel Core (TM) i7 CPU,
and 4GB of memory) to run the test problems.

6.1. Refinement of triangulations of randomly generated data over a rectangle

We consider randomly generated data over a rectangle. The CGAL library
[10] was used to obtain the initial Delaunay triangulations. Note that due to the
strategy used for generating the triangulation vertices, the initial triangulations
include small sets of poor quality triangles. Our goal is to evaluate the perfor-
mance of the iterative application of the multithread algorithm for triangulation
refinement, going from triangulations of 200000 triangles to triangulations of 4-5
millions of triangles.

For testing the behavior of iterative refinement, we have considered three
strategies for selecting sets of triangles to be refined:

Largest triangles refinement. Here we repeatedly select a fixed percent-
age of the triangles with largest (longest) edges in the current mesh. Note that
this testing strategy means the selection of an important set of terminal tri-
angles of each current mesh, so we expect that the refinement propagation be
minimized.

Smallest triangles refinement. Here we repeatedly select a fixed per-
centage of the triangles with smallest (longest) edges in the current mesh. Con-
sequently the refinement is repetitively concentrated around the smallest tri-
angles of the initial mesh, and we expect that the propagation refinement be
maximized.

Random triangles refinement. Here we repeatedly and randomly select
a fixed percentage of the triangles of the current mesh.

For the three refinement strategies, we have repeatedly refined the 5% of the
triangles of the current mesh (and so on with the 10%, and 25% of the triangles)
until achieving meshes of around 5 millions of triangles.

Tables 1 to 6 present results for six testing problems (10% refinement of
smallest, largest and random triangles, 25% refinement of smallest largest and
random triangles). These include some statistics on the iterative parallel re-
finement by using 4 threads. Each row j associated to the jth refinement step,
includes the size of the initial mesh, the number of triangles to be refined, the
size of the refined mesh, the execution time spent at the current iteration for
the 4-threads case, and the accumulated time until the jth iteration for the
4-threads case. For the final mesh of the current iteration, the row also includes
the length of the average Lepp in the mesh, and the length of the longest Lepp
in the mesh.

For the same testing problems, Tables 7 to 12 summarize the execution time
for the serial case and for using 2, 3 and 4 cores, their associated speedup and
their associated efficiency, throughout the refinement iterations.

13

As expected, the refinement of the largest triangles, which involves a big
subset of the terminal triangles in the refinement process, produces the smallest
size refined meshes, while the refinement of the smallest triangles produces the
biggest size refined meshes. Note also that as expected the meshes size increase
less in percentage as the refinement proceeds. On the other hand, we can see
that the refinement of random triangles represents better the average behavior of
the algorithm (in between of the results obtained for largest triangles refinement
and smallest triangles refinement).

In order to evaluate the practical performance of the algorithm we have
computed the speedup, which is the time of the serial algorithm divided by the p-
processors algorithm time, and the efficiency measure, which is computed as the
speedup divided by the number of processors, For a discussion on these concepts
see section 5 and references [25, 20]. Note that according to the discussion of
section 5, the algorithm presents acceptable efficiency (above 0.75 for most of
the iterations and the different cases) and good scalable behavior. In general the
efficiency increases as the size of the input mesh increases, while the efficiency
remains almost constant as the number of cores increases. Note that the worst
efficiency corresponds to some isolated iterations of the 10% largest triangle
refinement case (0.58 for the refinement iterations 3,5,8,11). We believe that
this is due to the overhead of the parallel Lepp processing, since for this case
most of the work is performed over pairs of terminal triangles. On the contrary
the 10% random triangle selection shows a superlinear behavior which happens
rarely with some algorithms. This suggests that the random processing of the
triangles of Sref should reduce Lepp collisions and should improve the algorithm
efficiency. Note that both for the largest and smallest triangle refinement cases,
the triangles of Sref were processed in order (from largest to smallest triangles,
and from smallest to largest triangles, respectively).

Finally note that, since the randomly generated data point produces initial
triangulations with a percentage of bad quality triangles, these are also good
examples for studying the algorithm behavior with respect to the smallest angle,
for big refined meshes. For all the test cases, the distribution of smallest angle
was obtained, showing that the mesh improvement behavior of the Lemma 4
holds as expected. This can be seen in Table 13 for 10% random triangle
refinement case. The initial mesh has 6.43% of triangles with smallest angles
less than 10 degrees, 23.43% of triangles with smallest angles less than 20◦ and
25% of triangles with angles between 30 and 40 degrees. In exchange, the final
mesh has only 1.93% of triangles with angles less than 10◦, 5.45% of triangles
with angles less than 20◦ and 48,30% of triangles with smallest angles between
30 and 40 degrees. Note that the worst angles are not eliminated but isolated
in the refined meshes. These results are also presented graphically in Figure 5
(initial mesh, mesh 4 and mesh 8).

Finally, Figures 6 and 7 show the initial and a refined triangulation for a
small example (3000 triangles in the initial mesh).

14

6.2. Refinement of an L-shaped domain

In order to simulate the adaptive refinement associated to finite element
methods, we have considered the L-shaped domain of the Figure 8, with reen-
trant vertex B of coordinates (5,5). We have performed refinement by using a
circle refinement region of center B and radius r (see Figure 8), for different
values of the parameter r. The initial mesh is shown in Figure 8. We have per-
formed iterative refinement of all the triangles that intersect Rc until obtaining
triangles of size δ = 0.001 (longest edge ≤ δ), by starting with the initial mesh
of 6 triangles of Figure 8. Note that all the refined meshes only include right
isosceles triangles.

Tables 14,15,16 show some statistics obtained for the iterative refinement for
the last refinement steps, while Tables 17,18,19 summarize the computing times
and the values of speedup and efficiency associated to these problems. We can
see that the algorithm shows an almost ideal behavior with efficiency higher
than 0.86 for all the iterations included.

Note that for these problems the refinement concentrates in the interior
of Rc where the number of triangles refined by propagation remains very low
throughout the refinement iterations. This is in complete agreement with the
results of Lemmas 7 and 8. A small refined mesh of the L shaped domain is
shown in Figure 9.

15

Table 1: Statistics on iterative refinement, 10% smallest triangles, 4 threads case.

Mesh Triangles Final Execution Accum Avrge Longest
size to be refined Mesh Size Time [ms] Time Lepp Lepp

199967 19997 390056 444 444 3.62137 17
390056 39006 648271 596 1040 3.62780 16
648271 64827 929824 665 1705 3.71453 17
929824 92982 1244975 856 2561 3.75525 18
1244975 124498 1601045 850 3411 3.75182 19
1601045 160105 2016463 1145 4556 3.71457 21
2016463 201646 2499121 1388 5944 3.67123 23
2499113 249911 3078594 1534 7478 3.61935 23

Table 2: Statistics on iterative refinement, 10% biggest triangles, 4 threads case.

Mesh Triangles Final Execution Accum Avrge Longest
size to be refined Mesh Size Time [ms] Time Lepp Lepp

199967 19997 229556 123 123 3.09404 12
229556 22956 255764 66 189 2.94647 14
255764 25576 284528 160 349 2.84749 11
284528 28453 316069 91 440 2.77763 11
316069 31607 350533 85 525 2.72792 12
350533 35053 388300 99 624 2.68983 13
388300 38830 429846 187 811 2.66200 13
429846 42985 475448 113 924 2.64107 13
475448 47545 525769 126 1050 2.62206 12
525769 52577 581251 137 1187 2.60169 10
581251 58125 642463 194 1381 2.58612 10
642463 64246 710053 264 1645 2.57197 10
710053 71005 784723 183 1828 2.56060 10
784723 78472 867121 261 2089 2.55001 11

Table 3: Statistics on iterative refinement, 10% random selection, 4 threads case.

Mesh Triangles Final Execution Accum Avrge Longest
size to be refined Mesh Size Time [ms] Time Lepp Lepp

199967 19996 294738 254 254 3.27653 19
294738 29473 420972 303 557 3.19591 16
420972 42097 595838 426 983 3.14954 15
595838 59583 839651 594 1577 3.13082 15
839651 83965 1180479 840 2417 3.11291 14
1180479 118047 1658733 1207 3624 3.10386 15
1658733 165873 2327815 1602 5226 3.09373 13
2327815 232781 3261653 2237 7463 3.08542 14
3261653 326165 4569294 3167 10630 3.07860 17

16

Table 4: Statistics on iterative refinement, 25% smallest triangles, 4 threads case.

Mesh Triangles Final Execution Accum. Avrge Longest
size to be refined Mesh Size Time [ms] Time Lepp Lepp

199967 49991 495340 755 755 3.41820 17
495340 123835 1035383 1296 2051 3.28188 16
1035383 258845 1881482 2124 4175 3.26975 17
1881482 470370 3164480 3132 7307 3.27757 17
3164480 791120 5066810 4684 11991 3.26006 19

Table 5: Statistics on iterative refinement, 25% largest triangles, 4 threads case.

Mesh Triangles Final Execution Accum. Avrge Longest
size to be refined Mesh Size Time [ms] Time Lepp Lepp

199967 49991 276067 197 197 2.85749 12
276067 69016 356806 250 447 2.71562 12
356806 89201 459687 315 762 2.64974 12
459687 114921 590847 372 1134 2.60073 10
590847 147711 757825 505 1639 2.56403 10
757825 189456 970193 578 2217 2.53998 11
970193 242548 1240472 785 3002 2.52329 10
1240472 310118 1585070 955 3957 2.51098 10
1585070 396267 2023093 1108 5065 2.49905 10
2023093 505773 2580320 1573 6638 2.48278 9
2580320 645080 3288422 1761 8399 2.47567 9
3288422 822105 4188240 2254 10653 2.47121 10

Table 6: Statistics on iterative refinement, 25% random selection, 4 threads case.

Mesh Triangles Final Execution Accum. Avrge Longest
size to be refined Mesh Size Time [ms] Time Lepp Lepp

199967 49992 389426 532 532 3.16258 15
389426 97357 707114 819 1351 2.99168 13
707114 176779 1255906 1316 2667 2.89928 13
1255906 313977 2205602 2416 5083 2.84503 13
2205602 551401 3847925 4252 9335 2.80838 12

17

Table 7: Execution time and efficiency measures, 10% smallest triangles.

Execution Time (ms) Speed-Up Efficiency

Mesh Serial 2P 3P 4P 2P 3P 4P E2 E3 E4

1 1508 1007 657 451 1,50 2,30 3,34 0,75 0,77 0,84
2 2030 1226 800 604 1,66 2,54 3,36 0,83 0,85 0,84
3 2206 1449 876 759 1,52 2,52 2,91 0,76 0,84 0,73
4 2475 1449 1006 747 1,71 2,46 3,31 0,85 0,82 0,83
5 2805 1695 1256 877 1,65 2,23 3,20 0,83 0,74 0,80
6 3280 1860 1329 1134 1,76 2,47 2,89 0,88 0,82 0,72
7 3835 2249 1552 1386 1,71 2,47 2,77 0,85 0,82 0,69
8 4588 2649 1846 1508 1,73 2,49 3,04 0,87 0,83 0,76

Table 8: Execution time and efficiency measures, 10% largest triangles.

Execution Time (ms) Speed-Up Efficiency

Mesh Serial 2P 3P 4P 2P 3P 4P E2 E3 E4

1 239 133 139 92 1.80 1.72 2.60 0.90 0.57 0.65
2 212 120 88 72 1.77 2.41 2.94 0.88 0.80 0.74
3 233 130 95 100 1.79 2.45 2.33 0.90 0.82 0.58
4 256 143 104 84 1.79 2.46 3.05 0.90 0.82 0.76
5 281 157 113 123 1.79 2.49 2.28 0.89 0.83 0.57
6 309 171 124 99 1.81 2.49 3.12 0.90 0.83 0.78
7 338 188 136 116 1.80 2.49 2.91 0.90 0.83 0.73
8 372 225 150 159 1.65 2.48 2.34 0.83 0.83 0.58
9 411 230 166 131 1.79 2.48 3.14 0.89 0.83 0.78
10 453 267 197 138 1.70 2.30 3.28 0.85 0.77 0.82
11 500 279 233 216 1.79 2.15 2.31 0.90 0.72 0.58
12 552 307 229 173 1.80 2.41 3.19 0.90 0.80 0.80

18

Table 9: Execution Time and efficiency measures, 10% random selection.

Execution Time (ms) Speed-Up Efficiency

Mesh Serial 2P 3P 4P 2P 3P 4P E2 E3 E4

1 759 455 307 253 1.67 2.47 3 0.83 0.82 0.75
2 1085 590 397 294 1.84 2.73 3.69 0.92 0.91 0.92
3 1650 858 532 423 1.92 3.1 3.9 0.96 1.03 0.98
4 2438 1066 743 595 2.29 3.28 4.1 1.14 1.09 1.02
5 3504 1548 1032 839 2.26 3.4 4.18 1.13 1.13 1.04
6 5034 2153 1439 1295 2.34 3.5 3.89 1.17 1.17 0.97
7 7191 3070 2023 1583 2.34 3.55 4.54 1.17 1.18 1.14
8 10650 4147 2870 2221 2.57 3.71 4.8 1.28 1.24 1.2
9 14628 5903 3978 3190 2.48 3.68 4.59 1.24 1.23 1.15

Table 10: Execution time and efficiency measures, 25% smallest triangles.

Execution Time (ms) Speed-Up Efficiency

Mesh Serial 2P 3P 4P 2P 3P 4P E2 E3 E4

1 2351 1527 929 755 1,54 2,53 3,11 0,77 0,84 0,78
2 4236 2424 1626 1296 1,75 2,61 3,27 0,87 0,87 0,82
3 6691 3805 2593 2124 1,76 2,58 3,15 0,88 0,86 0,79
4 9988 5828 3979 3132 1,71 2,51 3,19 0,86 0,84 0,80
5 15008 8729 6306 4684 1,72 2,38 3,20 0,86 0,79 0,80

Table 11: Execution time and efficiency measures, 25% largest triangles.

Execution Time (ms) Speed-Up Efficiency

Mesh Serial 2P 3P 4P 2P 3P 4P E2 E3 E4

1 595 342 249 197 1,74 2,39 3,02 0,87 0,80 0,76
2 628 371 266 250 1,69 2,36 2,51 0,85 0,79 0,63
3 799 489 354 315 1,63 2,26 2,54 0,82 0,75 0,63
4 1017 676 472 372 1,50 2,15 2,73 0,75 0,72 0,68
5 1291 769 536 505 1,68 2,41 2,56 0,84 0,80 0,64
6 1639 977 679 578 1,68 2,41 2,84 0,84 0,80 0,71
7 2081 1232 858 785 1,69 2,43 2,65 0,84 0,81 0,66
8 2718 1557 1093 955 1,75 2,49 2,85 0,87 0,83 0,71
9 3370 1999 1392 1108 1,69 2,42 3,04 0,84 0,81 0,76
10 4402 2547 1780 1573 1,73 2,47 2,80 0,86 0,82 0,70
11 5449 3227 2560 1761 1,69 2,13 3,09 0,84 0,71 0,77
12 7091 4144 2877 2254 1,71 2,46 3,15 0,86 0,82 0,79

19

Table 12: Execution time and efficiency measures, 25% random selection.

Execution Time (ms) Speed-Up Efficiency

Mesh Serial 2P 3P 4P 2P 3P 4P E2 E3 E4

1 1513 980 597 472 1.54 2.53 3.21 0.77 0.84 0.80
2 2522 1579 987 782 1.60 2.56 3.23 0.80 0.85 0.81
3 4160 2564 1713 1354 1.62 2.43 3.07 0.81 0.81 0.77
4 7401 4606 2955 2312 1.61 2.50 3.20 0.80 0.83 0.80
5 12940 7719 5143 4002 1.68 2.52 3.23 0.84 0.84 0.81

Table 13: Distribution of smallest angles throughout the iterations. Random triangles selec-
tion, 10% refinement.

Distribution of smallest angles (in %)

Mesh Mesh Size 0o − 10o 10o − 20o 20o − 30o 30o − 40o 40o − 50o 50o − 60o

M0 199967 6.43 17.00 24.43 25.51 19.37 7.26
M1 294738 5.55 13.41 21.97 30.05 20.50 8.55
M2 420972 4.76 10.98 20.01 33.76 21.38 9.10
M3 595838 4.11 9.15 18.34 36.85 22.12 9.43
M4 839651 3.58 7.70 16.84 39.55 22.71 9.61
M5 1180479 3.14 6.50 15.54 41.84 23.24 9.77
M6 1658733 2.77 5.54 14.39 43.85 23.63 9.86
M7 2327815 2.46 4.73 13.40 45.57 23.94 9.95
M8 3261653 2.18 4.07 12.54 47.02 24.19 10.04
M9 4700254 1.93 3.52 11.88 48.30 24.29 10.08

20

Figure 5: Distribution of smallest angles, 10% random refinement, 4 threads

Figure 6: Initial triangulation

Figure 7: 25% random refinement; second refined mesh

21

5

105

10

Rc

B

Figure 8: L-shaped domain with refinement region Rc

Table 14: Statistics on iterative refinement, L domain, circle refinement region, r=0.3, triangle
size δ=0.001, 4 threads case.

Refinement Mesh Triangles Final Execution Accum Avrge Longest
Iteration size to be refined Mesh Size Time [ms] Time Lepp Lepp

22 39234 37530 77130 222 222 2.05207 14
23 77130 74760 152478 439 661 2.03722 14
24 152478 149094 302370 867 1528 2.02305 14
25 302370 297612 600990 1788 3316 2.01720 14
26 600990 594474 1197294 3557 6873 2.01720 14

Table 15: Statistics on iterative refinement, L domain, circle refinement region, r=0.5, triangle
size δ=0.001, 4 threads case.

Refinement Mesh Triangles Final Execution Accum Avrge Longest
Iteration size to be refined Mesh Size Time [ms] Time Lepp Lepp

22 106452 103662 210738 677 677 2.03220 12
23 210738 206844 418512 1236 1913 2.02137 13
24 418512 413082 833040 2440 4353 2.01533 14
25 833040 825294 1660182 5001 9354 2.00983 11
26 1660182 1649400 3312420 10067 19421 2.00983 11

22

Table 16: Statistics on iterative refinement, L domain, circle refinement region, r=1.2, 24
iterations, 4 threads case.

Refinement Mesh Triangles Final Execution Accum Avrge Longest
Iteration size to be refined Mesh Size Time [ms] Time Lepp Lepp

20 152406 149094 302298 873 873 2.03703 14
21 302298 297612 600918 1791 2664 2.02295 14
22 600918 594468 1197198 3470 6134 2.01711 14
23 1197198 1188012 2387346 7132 13266 2.01245 14
24 2387346 2374542 4764960 14227 27493 2.00870 14

Table 17: Execution time and efficiency measures, L domain, circle refinement region, r=0.3,
δ=0.001.

Execution Time (ms) Speed-Up Efficiency

Refinement Iteration Serial 2P 3P 4P 2P 3P 4P E2 E3 E4

22 768 439 281 222 1,75 2,73 3,46 0,87 0,91 0,86
23 1559 823 571 439 1,89 2,73 3,55 0,95 0,91 0,89
24 3062 1666 1123 867 1,84 2,73 3,53 0,92 0,91 0,88
25 6343 3427 2300 1788 1,85 2,76 3,55 0,93 0,92 0,89
26 12543 6838 4600 3557 1,83 2,73 3,53 0,92 0,91 0,88

Table 18: Execution time and efficiency measures, L domain, circle refinement region, r = 0.5,
δ=0.001

Execution Time (ms) Speed-Up Efficiency

Refinement
Iteration Serial 2P 3P 4P 2P 3P 4P E2 E3 E4

22 2112 1205 784 677 1,75 2,69 3,12 0,88 0,90 0,78
23 4556 2321 1627 1236 1,96 2,80 3,69 0,98 0,93 0,92
24 8461 4650 3135 2440 1,82 2,70 3,47 0,91 0,90 0,87
25 17367 9593 6396 5001 1,81 2,72 3,47 0,91 0,91 0,87
26 34668 19002 12804 10067 1,82 2,71 3,44 0,91 0,90 0,86

23

Table 19: Execution time and efficiency measures, L domain, circle refinement region, r=1.2,
24 iterations

Execution Time (ms) Speed-Up Efficiency

Refinement
Iteration Serial 2P 3P 4P 2P 3P 4P E2 E3 E4

20 3038 1645 1144 873 1,85 2,66 3,48 0,92 0,89 0,87
21 6213 3425 2312 1791 1,81 2,69 3,47 0,91 0,90 0,87
22 12152 6673 4481 3470 1,82 2,71 3,50 0,91 0,90 0,88
23 24777 13910 9231 7132 1,78 2,68 3,47 0,89 0,89 0,87
24 49303 27328 18363 14227 1,80 2,68 3,47 0,90 0,89 0,87

Figure 9:

24

7. Conclusions

We have presented a reasonably efficient and good scalable multithread par-
allel Lepp-bisection algorithm for the refinement of triangulations, with effi-
ciency higher than 0.75 for most of the cases of randomly generated data, and
with efficiency higher than 0.86 for the L shaped domain. The analysis of the
experiments performed suggests that the random processing of the triangles to
be refined should improve the algorithm efficiency. In the near future we will test
the algorithm with different architectures and bigger multicore computers. We
plan to generalize the algorithm to 3-dimensions, where each thread will take in
charge the multidirectional Lepp points insertion task involved with each (to be
refined) target tetrahedron. We will also study Lepp-bisection distributed mem-
ory algorithms, as well as mixed multithread / distributed refinement methods.

Acknowledgements. This work was partially supported by the Department of
Computer Science , University of Chile; and by the Spanish Government, “Sec-
retaŕıa de Estado de Universidades e Investigación”, “Ministerio de Ciencia e
Innovación”, and FEDER, grant contracts: CGL2008-06003-C03 and UNLP08-
3E-010. We thank the referees who contributed to the improvement of this
paper.

References

[1] A. Adler, On the Bisection Method for Triangles, Mathematics of Computation, 40 (1983)
571-574.

[2] C. Antonopoulos, F. Blagajevic, A. Chernikov, N. Chrisochoides, and D. Nikolopoulos.
Algorithm, software, and hardware optimizations for delaunay mesh generation on simul-
taneous multithreaded architectures. Journal on Parallel and Distributed Computing, 69,
2009.

[3] C. Antonopoulos, F. Blagajevic, A. Chernikov, N. Chrisochoides, and D. Nikolopoulos.
A multigrain delaunay mesh generation method for multicore smt-based architectures.
Journal of Parallel and Distributed Computing, 69(7), 2009.

[4] I. Babuska, A.K. Aziz, On the angle condition in the finite elemen method, SIAM J.
Numer. Anal 13 (1976) 214-226.

[5] I. Babuska, O. C. Zienkiewicz, J. Gago and E.R. de A. Oliveira, (Eds.). Accuracy estimates
and adaptive refinements in finite element computations, John Wiley, 1986.

[6] T. Baker (1989), Automatic mesh generation for complex three dimensional regions using
a constrained Delaunay triangulation. Engineering with Computers, 5(1989), 161-175.

[7] T. J. Baker (1994). Triangulations, mesh generation and point placement strategies. Com-
puting the Future, ed. D Caughey, John Wiley, 1994, 61-75.

[8] R. E. Bank, PLTMG: A Software Package for Solving Elliptic Partial Differential Equa-
tions, Users’ Guide 8.0. SIAM, 1998.

[9] H. Borouchaki and P. L. George (1997), Aspects of 2-D Delaunay Mesh Generation. In-
ternational Journal for Numerical Methods in Engineering, 40, 1997, 1957-1975.

[10] Jean-Daniel Boissonnat, Olivier Devillers, Sylvain Pion, Monique Teillaud, and Mariette
Yvinec. *Triangulations in CGAL*. /Comput. Geom. Theory Appl./, 22:5-19, 2002.

25

[11] C. Breshears, The Art of Concurrency: A Thread Monkey’s Guide to Writing Parallel
Applications. O’Reilly Media, Inc. 2009.

[12] J.G. Castaños, J.E. Savage, Pared: a framework for the adaptive solution of pdes. In 8th
IEEE Symposium on High Performance Distributed Computing, 1999.

[13] José G. Cataños and John E. Savage. Parallel refinement of unstructured meshes. Procs
IASTED Conference on Parallel and Distributed Computing and Systems (PDCS’99),
Boston, 1999.

[14] José G. Cataños and John E. Savage. Repartitioning unstructured adaptive meshes. In
IPDPS, pages 823-832. IEEE Computer Society, 2000.

[15] A. Chernikov and N. Chrisochoides. Generalized two-dimensional delaunay mesh refine-
ment. SIAM Journal on Scientific Computing, 31:3387-3403, 2009.

[16] A. Chernikov and N. Chrisochoides. Algorithm 872: Parallel 2d constrained delaunay
mesh generation. ACM Trans. Math. Softw. 34(1):1-20, 2008.

[17] L. P Chew (1989a). Constrained Delaunay triangulations. Algorithmica 4 (1989) 97-108.

[18] L.P. Chew, Guaranteed-quality triangular meshes. Technique Report TR-89-983 Cornell
University, 1989.

[19] P. L. George, F. Hecht, and E. Saltel (1991). Automatic mesh generator with specified
boundary. Source, Computer Methods in Applied Mechanics and Engineering, 92 (1991)
269 V 288.

[20] A. Grama, A. Gupta, G. Karypis and V. Kumar, Introduction to Parallel Computing,
2nd. Ed., Addison Wesley, 2003.

[21] C. Gutierrez, F. Gutierrez, M.C. Rivara, Complexity on the bisection method. Theoretical
Computer Science 382 (2007), 131-138.

[22] Mark T. Jones and Paul E. Plassmann. Parallel algorithms for adaptive mesh refinement.
SIAM Journal on Scientific Computing, 18(3):686-708, 1997.

[23] M. T. Jones, P.E. Plassman, Computational results for parallel unstructured mesh com-
putations, Computing Systems in Engineering, 5 (1994) 297–309.

[24] M. T. Jones, E. Plassmann, Adaptive refinement of unstructured finite element meshes,
Finite Elements in Analysis and Design, 25 (1997) 41–60.

[25] A. H. Karp, H. P. Flatt. Measuring parallel processor performance. Communications of
the ACM, 33 (1990), 539-543.

[26] B. Kearfott, A Proof of Convergence and an Error Bound for the Method of Bisection in
Rn, Mathematics of Computation, 32 (1978) 1147–1153.

[27] C.L. Lawson, Software for C1 surface interpolation, In Mathematical Software III, John
R. Rice (editor), Academic Press 1977, 161-194.

[28] A. Liu, B. Joe, Quality local refinement of tetrahedral meshes based on bisection, SIAM
Journal on Scientific Computing, 16 (1995) 1269–1291.

[29] U. Manber, Introduction to algorithms. A creative Approach, Addison Wesley, 1991.

[30] S. N. Muthukrishnan, P. S. Shiakolas, R. V. Nambiar, K. L. Lawrence, Simple algorithm
for adaptative refinement of three-dimensional finite element tetrahedral meshes, AIAA
Journal, 33 (1995) 928–932.

26

[31] N. Nambiar, R. Valera, K. L. Lawrence, R. B. Morgan, D. Amil. An algorithm for adap-
tive refinement of triangular finite element meshes. International Journal for Numerical
Methods in Engineering, 36 (1993) 499–509.

[32] T. Rauber, and G.Runger, Parallel programming for multicore and cluester systems.
Springer, 2010.

[33] M. C. Rivara, Design and data structure for fully adaptive, multigrid finite-element
software, ACM Transactions on Mathematical Software, 10 (1984) 242–264.

[34] M. C. Rivara, Algorithms for refining triangular grids suitable for adaptive and multigrid
techniques, International Journal for Numerical Methods in Engineering, 20 (1984) 745–
756.

[35] M. C. Rivara, A dynamic multigrid algorithm suitable for partial differential equations
with singular solutions, In Recent Advances in Systems Modelling and Optimization,
L. Contesse, R. Correa, A. Weintraub (Eds), Lecture Notes in Control and Information
Sciences, Springer-Verlag, (1986) 190–199.

[36] M. C. Rivara, Adaptive finite element refinement and fully irregular and conforming
triangulations, Chapter 20 in Accuracy Estimates and Adaptive Refinements in Finite
Element Computations, I. Babuska, J. Gago. E.R. de A. Oliveira, O.C. Zienkiewicz (Eds.),
John Wiley (1986) 359–370.

[37] M. C. Rivara, Selective refinement/derefinement algorithms for sequences of nested tri-
angulations, International Journal for Numerical Methods in Engineering, 28 (1989) 2889–
2906.

[38] M. C. Rivara and C. Levin, A 3D refinement algorithm suitable for adaptive and multigrid
techniques, Communications in Applied Numerical Methods, 8 (1992) 281–290.

[39] M. C. Rivara, New longest-edge algorithms for the refinement and/or improvement of
unstructured triangulations, International Journal for Numerical Methods in Engineering,
40 (1997) 3313–3324.

[40] M. C. Rivara, M. Palma, New LEPP Algorithms for Quality Polygon and Volume Trian-
gulation: Implementation Issues and Practical Behavior, In Trends in unstructured mesh
generation, A. Cannan . Saigal (Eds.), AMD 220 (1997) 1–8.

[41] M. C. Rivara, N. Hitschfeld, R. B. Simpson, Terminal edges Delaunay (small angle based)
algorithm for the quality triangulation problem, Computer-Aided Design, 33 (2001) 263–
277.

[42] M. C. Rivara, C. Calderón, A. Federov, N. Chrisochoides, Parallel decoupled terminal-
edge bisection method for 3D mesh generation, Engineering with Computers, 22 (2006)
536-544.

[43] M.C. Rivara, Lepp-bisection algorithms, applications and mathematical properties, Ap-
plied Numerical Mathematics, 59(2009) 2218-2235.

[44] M.C. Rivara, C. Calderon, Lepp terminal centroid method for quality triangulation,
Computer-Aided Design 42(2010) 58-66.

[45] I. G. Rosenberg, F. Stenger, A Lower Bound on the Angles of Triangles Constructed by
Bisecting the Longest Side, Mathematics of Computation, 29 (1975) 390–395.

[46] J. Ruppert, A Delaunay refinement algorithm for quality 2-dimensional mesh generation,
Journal of Algorithms, 18 (1995) 548–585.

27

[47] W. J. Schroeder, M. S. and Shephard (1990). A combined octree/ Delaunay method
for fully automatic 3-D mesh generation, International Journal for Numerical Methods in
Engineering, John Wiley, Num 29, pp.37-55, 1990

[48] M.S. Shephard, F. Guerinoni, J.E. Flaherty, R.A. Ludwig, P.L. Baehmann (1988), Finite
octree mesh generation for three-dimensional flow analysis, In Numerical Grid Generation
in Computational Fluid Mechanics, Pineridge Press, pp.709-718, 1988

[49] M.S. Shephard, J.E. Flaherty, C.L. Bottasso, H. L. de Cougny, C. Ozturan, and M.L.
Simone (1997). Parallel automatic adaptive analysis. Parallel Computing 23(9): 1327-1347,
1997.

[50] J.R. Shewchuk (2002), Delaunay refinement algorithms for triangular mesh generation.
Computational Geometry. Theory and Applications 22(2002), 21-74.

[51] R. Sibson (1978). Locally equiangular triangulations. Computer Journal, 21(1978) 243–
245, 1978

[52] M. Stynes, On Faster Convergence of the Bisection Method for certain Triangles, Math-
ematics of Computation, 33 (1979) 1195–1202.

[53] M. Stynes, On Faster Convergence of the Bisection Method for all Triangles, Mathematics
of Computation, 35 (1980) 1195–1202.

[54] M. A. Weiss, Data structures and algorithm analysis in C++, 3rd edition, Addison
Wesley, 2006.

[55] R. Williams, Adaptive parallel meshes with complex geometry, In Numerical Grid Gen-
eration in Computational Fluid Dynamics and related Fields, AS Arcilla, J. Hauser, P.R.
Eiseman, J.F. Thompson (Eds) Elsevier Science Publishers. (1991) 201-213.

28

Comments on revised paper

Ref. APNUM-D-10-00228

Title: Multithread parallelization of Lepp-bisection algorithms

Applied Numerical Mathematics

Corresponding author: Maria-Cecilia Rivara

The revised paper version considers all the reviewers’ comments as enumerated below:

1. The typos and minor errors enumerated by both Reviewers were corrected. We spell-

checked the complete manuscript.

2. In section 4, second paragraph, I eliminated the word “parallel” according to the

suggestion of Referee #3.

3. The acknowledgments section was completed.

Maria-Cecilia Rivara

mcrivara@dcc.uchile.cl

*Response to Reviewers

Comments on revised paper

Ref. APNUM-D-10-00228

Title: Multithread parallelization of Lepp-bisection algorithms
Applied Numerical Mathematics

Corresponding author: Maria-Cecilia Rivara

The revised paper version considers all the reviewers’ comments as enumerated
below:

1. The presentations of the serial and parallel algorithms have been improved
and balanced as suggested by Reviewer #1. The introduction and discussion
of the serial algorithm was reduced to 7 pages, while the presentation of the
parallel algorithm was extended and improved. This includes a more
precise discussion of the synchronization issues considered in the algorithm
design, with illustrations that clarify the ideas, as well as more precise
implementation details.

2. We have included experiments that illustrate the practical refinement
strategies typical in adaptive finite element method as suggested by
Reviewer #1. This corresponds to an L-shaped domain with refinement
around the re-entrant corner.

3. The performance analysis was improved (as suggested by Reviewer #3) in
the following senses:
i) A new section 5 discussing the performance measures for parallel

computations, with adequate references to parallel literature it is
included. Note that in the literature it is known that it is difficult to
achieve ideal efficiency in practice, due to the overhead of parallel
implementations. We also clarify the important concept of
scalability.

ii) The paper at present includes two sets of testing problems: (1)
refinement of initial triangulations of random points, and (2)
refinement of an L-shaped domain around the reentrant corner
(asked for Reviewer #1), mimicking adaptive finite element
refinement. The algorithm shows better performance for the new
(more practical) problem.

iii) A more precise discussion on the algorithm performance is
presented. This refers to the new section 5 (discussing practical
parallel performance) and to the better results of the L-shaped
domain. We conclude that the method is reasonably efficient and
that shows good scalability: the efficiency is approximately
maintained as the number of cores increases.

iv) The analysis of the experiments performed over the rectangular
region allows to conclude that the random processing of the triangles
to be refined should reduce Lepp collisions and improve the
algorithm efficiency. This is proposed as a future improvement of
the algorithm.

Response to Reviewers

4. The quality of the refined meshes is only presented for one case (Reviewer
#1 and Reviewer #3)

5. The execution times, speed up and efficiency statistics throughout the
refinement iterations are presented together in one table. The serial fraction
was omitted (Reviewer #3).

6. The hardware is fully described. We have used the physical cores, not the
virtual ones, included in the computer.

7. The presentations of Lemmas 1, 4 and 5 were improved by considering the
comments of Reviewer #1.

8. The typos and minor errors were corrected (Reviewer #1)

Maria-Cecilia Rivara
mcrivara@dcc.uchile.cl

