Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/16340
Title: Multithread parallelization of lepp-bisection algorithms
Authors: Rivara, María Cecilia
Rodríguez Moreno, Pedro
Montenegro, Rafael 
Jorquera, Gastón
UNESCO Clasification: 12 Matemáticas
120601 Construcción de algoritmos
1204 Geometría
1206 Análisis numérico
Keywords: Longest edge bisection
Triangulation refinement
Lepp-bisection algorithm
Parallel multithread refinement
Parallel lepp-bisection algorithm
Finite element method
Método elementos finitos
Análisis de mallas
Issue Date: 2012
Journal: Applied Numerical Mathematics 
Abstract: Longest edge (nested) algorithms for triangulation refinement in two dimensions are able to produce hierarchies of quality and nested irregular triangulations as needed both for adaptive finite element methods and for multigrid methods. They can be formulated in terms of the longest edge propagation path (Lepp) and terminal edge concepts, to refine the target triangles and some related neighbors. We discuss a parallel multithread algorithm, where every thread is in charge of refining a triangle t and its associated Lepp neighbors. The thread manages a changing Lepp(t) (ordered set of increasing triangles) both to find a last longest (terminal) edge and to refine the pair of triangles sharing this edge...
URI: http://hdl.handle.net/10553/16340
ISSN: 0168-9274
DOI: 10.1016/j.apnum.2011.07.011
Source: Applied Numerical Mathematics [ISSN 0168-9274], v. 62 (4), p. 473-488
Rights: by-nc-nd
Appears in Collections:Actas de congresos
Thumbnail
Adobe PDF (1,17 MB)
Show full item record

SCOPUSTM   
Citations

3
checked on Oct 18, 2020

WEB OF SCIENCETM
Citations

2
checked on Oct 18, 2020

Page view(s)

20
checked on Oct 18, 2020

Download(s)

39
checked on Oct 18, 2020

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.