Identificador persistente para citar o vincular este elemento: https://accedacris.ulpgc.es/jspui/handle/10553/154922
Título: Automatic white shrimp (Penaeus vannamei) biometrical analysis from laboratory images using computer vision and deep learning
Autores/as: Abiam, Remache Gonzalez
Meriem, Chagour
Timon, Bijan Ruth
Raul, Trapiella Canedo
Marina, Martinez Soler
Alvaro, Lorenzo Felipe
Hyun-Suk, Shin
Maria-Jesus, Zamorano Serrano
Ricardo, Torres
Juan-Antonio, Castillo Parra
Eduardo, Reyes Abad
Ferrer Ballester, Miguel Ángel 
Afonso López, Juan Manuel 
Hernández Tejera, Francisco Mario 
Penate-Sanchez, Adrian 
Clasificación UNESCO: Investigación
Palabras clave: Shrimp Size Estimation
Penaeus Vannamei
Genetic Assessment
Pose Estimation
Computer Vision, et al.
Fecha de publicación: 2026
Publicación seriada: Engineering Applications of Artificial Intelligence 
Resumen: Manual morphological analysis for genetic selection in Penaeus vannamei aquaculture is a slow, error-prone bottleneck. We introduce Imashrimp, an automated system that uses colour and depth images to optimize this task by adapting deep learning and computer vision techniques to shrimp morphology. Imashrimp incorporates two discrimination modules to classify images by the point of view and determine rostrum integrity. These modules function as a "two-factor authentication" (human and Artificial Intelligence) system to validate annotations; this approach reduced metadata annotation errors, cutting point of view classification errors from 0.64% to 0% and rostrum integrity errors from 10.44% to 1.04%. A transformer-based pose estimation module predicts 23 keypoints on the shrimp's skeleton, achieving a general Mean Average Precision of 96.84% and a Percentage of Correct Keypoints of 91.67%. The resulting Two-Dimensional measurements are transformed into Three-Dimensional measurements using a Support Vector Machine regression. By achieving a final Mean Absolute Error (MAE) of 0.08 +/- 0.25 cm, IMASHRIMP demonstrates the potential to automate and accelerate shrimp morphological analysis, enhancing the efficiency of genetic selection and contributing to more sustainable aquaculture practices.
URI: https://accedacris.ulpgc.es/jspui/handle/10553/154922
ISSN: 0952-1976
DOI: 10.1016/j.engappai.2025.113493
Fuente: Engineering Applications Of Artificial Intelligence[ISSN 0952-1976],v. 165, (Febrero 2026)
Colección:Artículos
Adobe PDF (4,57 MB)
Vista completa

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.