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Manual morphological analysis for genetic selection in Penaeus vannamei aquaculture is a slow, error-prone
bottleneck. We introduce Imashrimp, an automated system that uses colour and depth images to optimize this
task by adapting deep learning and computer vision techniques to shrimp morphology. Imashrimp incorporates
two discrimination modules to classify images by the point of view and determine rostrum integrity. These
modules function as a “two-factor authentication” (human and Artificial Intelligence) system to validate
annotations; this approach reduced metadata annotation errors, cutting point of view classification errors
from 0.64% to 0% and rostrum integrity errors from 10.44% to 1.04%. A transformer-based pose estimation
module predicts 23 keypoints on the shrimp’s skeleton, achieving a general Mean Average Precision of
96.84% and a Percentage of Correct Keypoints of 91.67%. The resulting Two-Dimensional measurements are
transformed into Three-Dimensional measurements using a Support Vector Machine regression. By achieving
a final Mean Absolute Error (MAE) of 0.08+0.25 cm, IMASHRIMP demonstrates the potential to automate
and accelerate shrimp morphological analysis, enhancing the efficiency of genetic selection and contributing
to more sustainable aquaculture practices.

1. Introduction In response to the anticipated increase in global shrimp demand,
Ecuadorian shrimp farms must further enhance their competitiveness.
A key strategy involves the adoption of non-invasive measurement
methods in both production and breeding programs. These methods
have been shown to reduce costs, enhance measurement efficiency, and
improve final product quality (Ana et al., 2016).

The PMG-BIOGEMAR®Ogenetic breeding program, developed by

Aquaculture provides a sustainable source of aquatic food that
meets the nutritional demands of modern societies. In 2022, for the
first time in history, aquaculture production surpassed that of capture
fisheries, and it is expected to continue expanding in the coming years.
This rapid expansion necessitates improvements in data collection and
the development of novel analytical tools to ensure its sustainability.

At the species level, white-leg shrimp (Penaeus vannamei) led global
aquaculture production in 2022, with 6.8 million tonnes produced.
Ecuador emerged as the world’s leading exporter, in large part due to
its sustained efforts to modernize production systems and implement
genetic breeding programs (Food and Agriculture Organization of the
United Nations (FAO), 2024).
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the University of Las Palmas de Gran Canaria (Spain), has been im-
plemented by the Almar Group, a major shrimp producer based in
Ecuador (Shin et al.,, 2020). Genetic selection is carried out using
the Best Linear Unbiased Prediction (BLUP) methodology, in which
thousands of shrimp are assessed for growth and morphological traits.
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Previous studies have established the genetic parameters of these
morphological traits and identified the most relevant ones for selection
in this population (Shin et al., 2023; Martinez Soler et al., 2024).

However, the trait measurements in these studies were obtained
manually, a process that is time-consuming and prone to errors that are
difficult to correct. Automating these measurements can significantly
reduce operational costs and allow the evaluation of a much larger
number of individuals, thereby strengthening the effectiveness of the
genetic selection process. This study proposes a novel deep learning
solution to automate these measurements, enabling precise and robust
phenotyping.

This work introduces a system that uses deep learning to produce
precise and robust shrimp measurements. We adapt the successful line
of research pioneered by Wei et al. (2016) for human pose inference.
Our system is designed to predict the coordinates of 23 keypoints in
shrimp images. These keypoints collectively construct a virtual skele-
tal structure that encapsulates the morphological characteristics of
interest. By mapping these points, the system effectively represents
the anatomical framework of the shrimp, allowing the extraction and
analysis of relevant morphological variables.

Our approach estimates the specific keypoints that define the start
and end of each required measurement. For example, measuring the
head length first requires estimating the animal’s virtual skeleton;
the Two-Dimensional (2D) distance is then calculated between the
keypoints at the tip and back of the head. Once the 2D keypoints have
been detected and correctly estimated, we perform a regression that
transforms that 2D measurement to the required Three-Dimensional
(3D) measurement. Our system is able to perform both the required
lateral and dorsal measurements.

Our method’s goal is to enhance the manual measurement process
performed by human operators. The manual process of measuring and
labelling shrimp is prone to human error. In this paper, we focus on
using artificial intelligence (AI) as a “second check” to validate human
annotations and raise an alarm if discrepancies are found, although
our results show the AI already commits fewer errors than human
operators. Furthermore, our approach enhances operational efficiency
by drastically reducing the annotation time per specimen from ap-
proximately 9 min (manual measurement of all traits) to just 32 ms
(automated inference per image), directly translating into significant
labour cost savings and increased throughput for breeding facilities.

Our approach not only measures keypoints robustly but also handles
human error in two additional ways: by detecting the shrimp’s point of
view (lateral or dorsal) and by checking its rostrum integrity. The rostrum
is the beak-shaped structure on the shrimp’s head, which is essential
for measuring traits like cephalothorax length (Martinez Soler et al.,
2024). As this structure is often broken during the shrimp’s life, rostrum
integrity simply refers to the assessment of whether this ‘horn’ is intact
(good) or broken, a critical factor that determines if certain keypoints
can be measured.

First, an AI detection system predicts the shrimp’s point of view
(lateral or dorsal). This works as a secondary system that detects when
the human might have produced an error and generates an alert.
Second, a similar Al detector validates the human’s assessment of the
rostrum’s integrity. If our Al detector predicts that the human could
have committed an error (e.g., attempting to measure a broken rostrum
as if it were intact (good)), we raise an alarm. In summary, the main
contributions of our work are the following:

+ An automatic and robust system that can measure shrimp.
We introduce a system for robust 3D shrimp measurement,
achieved by modelling the animal as a 23-keypoint skeleton and
using deep learning to extract multi-point-of-view morphological
data from over 12,000 annotated images.

Two Al detection systems capable of mitigating human error.
We deploy two complementary Al modules that validate the ani-
mal’s point of view (lateral/dorsal) and rostrum integrity, alerting
the operator to potential data entry errors.
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» A regression estimator to increase the precision of the 3D
measurements. We use a regression estimator to convert 2D
pixel-based keypoints into real-world 3D measurements, which
significantly reduces the final system error.

2. Related work

We will now detail the context in which our work resides. We
will first detail other works performed in the field of aquaculture
engineering that address the extraction of morphological/biometrical
information from animals in a wide array of contexts. Secondly, we
will describe the work performed in the field of articulated 3D pose
estimation, which is the line of work from which our 3D shrimp pose
estimation draws inspiration.

To the best of our knowledge, no one has performed 3D shrimp
pose estimation before, the closest work was that of Chirdchoo et al.
(2024) that only performed visual analysis and reports errors of 2.1
centimetres (cm) of Mean Absolute Error (MAE) for the length of the
shrimp. In our work we are capable of estimating not just the length
of the shrimp but also a complete set of morphological measurements
from our detected shrimp skeleton. When comparing only the length
estimation we provide a much more precise measurement yielding
0.54 cm of MAE, which improves the results by nearly an order of
magnitude. This clearly shows that a more in-depth assessment of
morphological traits, like the one we propose in this paper, greatly
improves overall quality.

2.1. Computer vision in morphological analysis

The morphological measurement of aquatic animals is a critical
aspect of fisheries management, species monitoring, and aquaculture.
Although advanced artificial intelligence techniques and automated
systems have been widely applied to fish species, similar approaches for
shrimp remain under-explored. The challenge of automated morpholog-
ical analysis is twofold: first, the extraction of variables in pixel space,
and second, the conversion of those pixels into real-world physical
measurements (e.g., centimetres).

For the pixel extraction task, methods range from classical Com-
puter Vision to advanced deep learning, including semantic segmenta-
tion, detection, and pose estimation. For the conversion task, methods
vary from using no conversion to simple scaling factors or regression
models. Our work argues that for complex genetic selection, a pose
estimation framework combined with a regression-based converter is
the superior approach.

Existing approaches to pixel extraction vary in complexity. Early
work on shrimp relied on traditional Computer Vision
(Harbitz, 2007; Hadiyanto and Widodo, 2022), while recent studies use
Convolutional Neural Networks (CNNs) (Chao Zhou and Yang, 2021).
However, these modern systems, for both shrimp and fish, often rely on
segmentation methods (e.g.,Mask Region-based Convolutional Neural
Network (Mask R-CNN) Chirdchoo et al., 2024; Zhou et al., 2023;
Garcia-Santamaria et al., 2022; Garcia et al., 2019; Huang et al., 2020,
You Only Look Once (YOLO) Climent-Perez et al., 2024; Dong et al.,
2023; Tonachella et al., 2022).

While effective for simple external metrics like total length (often
the only variable measured), these methods are fundamentally insuffi-
cient for genetic selection. Our objective is a complete morphological
analysis of 23 distinct variables, many of which depend on inter-
nal anatomical keypoints (like segment junctions) that segmentation
masks cannot locate. For instance, identifying the precise positions
from where to measure abdominal segments requires detecting subtle
anatomical landmarks rather than just the animal’s outline; a segmen-
tation mask might accurately capture the shrimp’s silhouette but fail to
pinpoint these internal articulation points required for specific genetic
traits (e.g., segment lengths), leading to measurement inaccuracies due
to boundary misalignment.
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Table 1
Comparative analysis of Imashrimp with state-of-the-art morphological analysis systems. Abbreviations: N.° vars.: Number of measured variables; TL: Total Length;
MAPE: Mean Absolute Percentage Error; SLCNet: Shrimp Larvae Counting Network; YOLACT: You Only Look At CoefficienTs.

Research Species Objective Method Dataset N.° vars. TL MAE (cm) TL MAPE (%)
Chirdchoo Pacific white Estimating body weight by Detectron2 Train: 3946; 5 2.10 (Known 14.57
et al. shrimp extracting five key (Wu et al., Test: 1036 scaling (Known
(2024) morphological features: 2019a) + factor) scaling
area, perimeter, width, Classical factor)
length, and body posture Computer
Vision
Harbitz Pandalus Automatically estimate the Classical Not given 1 Non- Non-
(2007) borealis length of the shrimp shell Computer comparable comparable
Vision metrics metrics
Hadiyanto Penaeus Estimation of body weight Classical Train: 20; 1 Non- Non-
and vannamei using morphometric Computer Test: 6 comparable comparable
Widodo features extracted from Vision metrics metrics
(2022) images
Chao Zhou Cherax Estimation of body length SLCNet (Liu Train: 294; 1 No No
and Yang quadricarina- measurement et al., 2022) Test: 126 conversion to conversion to
(2021) tus (Shrimp physical units physical units
larvae)
Zhou Shrimp, Automatically estimate the Mask RCNN Train: 300; 2 No No
et al. species not size (length and width) of (He et al., Test: 150 conversion to conversion to
(2023) given shrimps to monitor their 2017) + physical units physical units
growth rate. Classical
Computer
Vision
Climent- 12 species + Estimating the length of YOLACT++ Train: 1108; 1 1.76 (Visual 11.44 (Visual
Perez 1 due to fish (Bolya et al., Test: 152 metrology metrology
et al. sexual 2019) based on based on
(2024) dimorphism homography) homography)
Garcia- Lampuga Estimate the average fork Mask R-CNN Train: 246; 1 Not given 4.00-6.90
Santamaria (Dolphinfish), length of fish in each (He et al., Test: 30 (Length-
et al. Coryphaena landing box 2017) weight scale
(2022) hippurus factor)
Garcia 7 species of Measurements of the Classical Train: 1625; 1 No No
et al. pelagic fish length of individual fish Computer Test: 80 conversion to conversion to
(2019) Vision + physical units physical units
Mask R-CNN
(He et al.,
2017)
Huang Fish (species Measurement of body Mask R-CNN Not given 2 0.55 (Scale 4.00 (Scale
et al. not specified) dimensions (length and (He et al., factor with factor with
(2020) width) of fish in an 2017) + chessboard chessboard
unrestricted environment Classical pattern) pattern)
Computer
Vision
Voskakis Gilthead The distance between the Open Pose Train: 250; 3 Not given Seabream:
et al. seabream and mouth and tail, mouth and (Cao et al., Test: 20 3.15;
(2021) European eye, and eye and tail is 2021) Seabass: 7.40
seabass estimated (Scale factor
with
chessboard
pattern)
Dong Fish (species Detection of 7 biological YOLO Detection: Not given No No
et al. not specified) keypoints on the fish’s (Redmon 3000; Pose conversion to conversion to
(2023) body et al., 2016) Estimation: physical units physical units
+ Lite-HRNet 2000
(Yu et al.,
2021) (7
keypoints)
Tonachella Gilthead Automatic estimation of YOLO Detection: 2 1.15 (Scale 5.50 (Scale
et al. seabream body length and prediction (Redmon 1400; Pose factor with factor with
(2022) of weight et al., 2016) Estimation: chessboard chessboard
+ ResNet-101 12800 pattern) pattern)
(He et al.,
2016)
Imashrimp Penaeus Complete morphological Imashrimp Train: 11122; 23, see Fig. 6 0.54 (Support 3.76 (Support
(Ours) vannamei analysis for genetic framework Test: 1245 Vector Vector
selection Machine) Machine)
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This limitation led us to a pose estimation framework. While some
fish studies have used pose estimation (e.g., OpenPose Cao et al., 2021,
Lite-High-Resolution Network (HRNet) Dong et al., 2023 or Residual
Network 101 (ResNet-101) Tonachella et al., 2022) to extract more
variables (2 to 3), Imashrimp is the first to apply a state-of-the-art
Vision Transformer (ViT) architecture (Xu et al., 2022) to shrimp.

This architectural choice aligns with recent trends in complex agri-
cultural and biological visual analysis, where transformer-based (ViT)
models are increasingly favoured over traditional Convolutional Neural
Networks (CNNs) for their superior ability to capture global rela-
tionships, despite potential trade-offs in processing speed (Cakmak,
2025). Our novel, reusable framework (integrating discrimination, pose
estimation, and conversion) is purpose-built for the genetic selection
workflow. It leverages a large, high-quality dataset (12,367 annotated
images) to achieve high-precision results across all 23 keypoints, not
just total length.

In Table 1, we show an in-depth comparison between Imashrimp
and other approaches that perform morphological analysis on other
fish or crustacean species. This table highlights the methodology, the
number of variables measured (N.° vars.), and the reported error for
Total Length (TL), the most common benchmark. As shown in Table
1, our framework not only measures a far more comprehensive set of
variables (23) but also achieves a significantly lower error (3.76% Mean
Absolute Percentage Error (MAPE)) than the most directly comparable
study (Chirdchoo et al., 2024) on the same species (14.57% MAPE).

Regarding pixel-to-centimetre conversion modules, there are sev-
eral methodologies. Some studies, such as (Chao Zhou and Yang,
2021), Zhou et al. (2023), Garcia et al. (2019) and Dong et al. (2023),
do not perform physical measurements, instead prioritizing the detec-
tion of precise morphological variables. Other works, such as (Huang
et al., 2020; Voskakis et al., 2021) and Tonachella et al. (2022), employ
triangulation systems using a chessboard and binocular cameras for
calibration.

In addition, some studies use a known real-world measurement to
derive a scaling factor, as seen in Chirdchoo et al. (2024), Garcia-
Santamaria et al. (2022) and Climent-Perez et al. (2024). Finally,
regression models provide another approach for efficient pixel-to-
centimetre conversion. Our study opts for this methodology, given the
substantial amount of real data collected for the 23 morphological
variables, allowing for the development of a robust predictive model
for this task.

2.2. Articulated 3D pose estimation

Obtaining the pose of a human or an animal has been extensively
researched for years and great advances have been made. The pose
of humans or animals is in essence an articulated skeleton, and the
task lies in finding with precision the 3D locations of the joints of said
skeletons.

Before deep learning, the most promising results obtained in 2D
human pose estimation can be seen in Andriluka et al. (2014). Ob-
taining precise 3D measurements remained a challenge at that time.
With the appearance of Convolutional Pose Machines (CPM) by Wei
et al. (2016) it was showed that using deep learning could yield very
robust 3D estimations to the articulated pose estimation problem. This
advancement was made possible by creating datasets that addressed the
need for larger amounts of training data, some of these datasets were
Human 3.6, by Ionescu et al. (2014) and HumanEva, by Sigal et al.
(2010).

From the original CPM research paper, many others continued to
improve the 3D estimation. For example, in the work by Tome et al.
(2017) it is proposed to optimize the 2D and 3D positions together
to improve both tasks through the inherent sharing of information
within the neural network architecture. In the work by Moreno-Noguer
(2016) the 3D pose is obtained by modelling the problem as a regres-
sion between two Euclidean distance matrices. In subsequent years,
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the paradigm changed from using convolutional neurons to using vi-
sual transformers by Dosovitskiy et al. (2021). This paradigm change
was then incorporated into many human pose estimation approaches
like (Dosovitskiy et al., 2021) and Xu et al. (2022).

Concerning the application of said approaches to animal pose es-
timation, there has been less work overall, but the said techniques
have been demonstrated to be robust enough to handle dog poses,
like (Rueegg et al., 2022), or even zebra, tiger, elephant, and horse, as
seen in Yao et al. (2022) amongst others. Again, this has been possible
due to the creation of datasets like the ones by Xu et al. (2023) and
by Marshall et al. (2021). The majority of the articulated 3D animal
pose estimation has been focused on mammals, which makes our work
quite unique as it shows that such techniques can be used on a wider
array of animal species, and particularly those of great economical
interest.

3. Background

In this section, we will describe the scenario in which our system
works to facilitate the understanding of our paper. Firstly, we will
introduce the way in which genetic selection is performed, secondly, we
will show the image capture setup (in Fig. 1) we have used for our data
collection and that is also used for testing, and finally, we will describe
the keypoint virtual skeleton definition that we propose and that comes
directly from the initial and final position from which measurements
are performed by the expert geneticists. Shrimp selective breeding.
Genetic selection breeding programs for the species allow breeders to
be selected according to their Estimated Breeding Values (EBVs) for a
desired trait to obtain the next generation. For the current population,
weight and morphological traits are among the most important traits
to be selected. To perform such selection, a statistical analysis of
morphological traits using Best Linear Unbiased Prediction (BLUP) is
used. Some of the more costly morphological traits to obtain are the
precise measurements of each part of the shrimp. Our system uses 23
morphological measurements from both the dorsal and lateral point of
views of the animal.

A detailed description diagram of the morphological measurements,
and how they are related to the shrimp virtual skeleton, can be found in
Fig. 6. More qualitative examples of the morphological measurements
as they are performed in real cases can be seen in Fig. 2 for the lateral
case and in Fig. 3 for the dorsal case. Fig. 2 provides a complete visual
breakdown for the lateral point of view, illustrating the comparison
between the ground truth and the model’s prediction (top row), the
pixel-level error and activation heatmaps (middle row), and a diagram
of the derived morphological measurements (bottom row).

Shrimp virtual skeleton definition. As explained before, each of
the measurements done on the shrimp for selective breeding consists
of a starting and final point of measurement. Many of those points
are used several times. For example, when measuring the head of the
shrimp we measure from point x, till point x,, and afterwards when
measuring the length of the first segment of the body of the shrimp
we measure from point x, to point x;. By taking each of the points
required for measurement and their topology we have our proposed
virtual skeleton as seen in Fig. 2 (top row on the left).

In our work we estimate two virtual skeletons depending on the
point of view, the lateral skeleton, Fig. 2, and the dorsal skeleton, Fig.
3. Given the skeletons that we have defined, we can perform keypoint
pose estimation, similar to the one used in humans in Wei et al. (2016)
or (Xu et al., 2022), to learn to predict the points we require for our
measurements. We learn two separate neural networks that estimate
the lateral and the dorsal skeleton separately.
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Fig. 1. Image acquisition setup and methodology. All shrimp were captured in four configurations, 0°, 90°, 180° and 270°. First row: Image acquisition of the
shrimp’s right lateral point of view from all degrees. Second row: Image acquisition of the shrimp’s left lateral point of view at all degrees. Third row: Capture
of images of the shrimp’s dorsal point of view at all degrees. This consists of a total of 12 images captured for each shrimp specimen, with a total number of
1223 shrimp specimens in the annotated dataset.
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Fig. 2. Description of the keypoint virtual skeleton used by our shrimp pose estimator and the measurements performed on the animal used for genetic
improvement. Top row: Ground truth virtual skeleton (left) and the prediction by Imashrimp (right), both with measures in centimetres. Middle row: Pixel
errors (left) and heatmaps activations (right). Bottom row: Derived measurements diagram. A full description of all measurements can be found in Shin et al.
(2023) and in Martinez Soler et al. (2024).
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Fig. 3. Description of the dorsal keypoint virtual skeleton used by our
shrimp pose estimator. First row: Ground truth virtual skeleton, with
measures in centimetres. Second row: Prediction of Imashrimp with measures
in centimetres. Third row: Pixel errors. Fourth row: Heatmaps activations.

4. Method

We have named our approach Imashrimp, and it is composed of
three different elements: firstly, two modules based on artificial intel-
ligence that perform the discriminator tasks (point of view and rostrum
integrity) to avoid human error during data labelling, secondly, the
shrimp pose estimation system that performs the keypoint estimation
from which measurements can be performed, and lastly, a regression
module that learns how to convert from pixel coordinates into real
world positions from which the 3D measurements can be obtained.

The function of the discriminator modules for the discrimination of
images will be explained according to two main factors, the shrimp’s
point of view and the shrimp integrity of the rostrum. Afterwards, the
operation of the shrimp pose estimation module will be explained,
which will be responsible for detecting 23 keypoints for each of the
point of views (lateral and dorsal), if the rostrum is broken it will
only detect 22. Finally, the morphological regression module will be
explained, which is responsible for converting the morphological vari-
ables resulting from the detection of keypoints (pose estimation system)
from pixels to centimetres.

The proposed method integrates these three modules (discrimi-
nation, pose estimation, and regression) into a complete system. To
illustrate this, the system’s end-to-end workflow is presented in Fig. 4.
This flowchart details the logical process from image capture, through
the logical decisions of the discrimination modules, to the final data
generation, clarifying the workflow for research and industrial use.
Complementing this workflow, Fig. 5 details the technical architec-
ture of the core pose estimation module. The specific morphological
variables derived from this process are then shown in Fig. 6.
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4.1. Discrimination systems

As described above, our proposed approach incorporates two inde-
pendent neural networks that are used to detect the conditions of the
shrimp alongside human annotation to greatly reduce human error.
When humans create the metadata associated with the images, they
have to introduce if the image was taken from a lateral or dorsal
point of view and if the shrimp has a complete rostrum. Based on this
information, our system selects the specific pose estimation model that
is required, whether the shrimp requires lateral measures or dorsal
measures to be detected, or reduce the number of keypoints from 23
to 22 if the rostrum is not present.

To maximize the robustness of our system, we show that the best
approach is to use both the human annotation and the automatically
detected artificial intelligence (AI) results. This works as a sort of two-
factor authentication, if human and AI agree, the data is introduced
into the database, if they disagree an alarm is raised for the data to be
checked and corrected. With this scheme, we manage to reduce human
error from 0.64% to 0% for the annotation of the point of view of the
image (lateral/dorsal), and we reduce human error in rostrum presence
from 10.44% to 1.04% with our discriminator systems. Results can be
seen in Table 2.

Both our rostrum integrity and point-of-view classifiers work in
the same way to help the human technician. To classify between the
lateral/dorsal point of view and the presence of rostrum, we use a
Residual Network 50 (ResNet-50) architecture, by He et al. (2016), for
binary classification. The use of Convolutional Neural Networks (CNNs)
to classify images as a proxy for complex physical measurements is
an analogous task to recent work in other fields, such as medical
diagnostics, where numerous Deep Learning architectures have been
benchmarked for classifying intraoral photographs to predict cephalo-
metric measurements (Kartbak et al., 2025). While our binary task did
not require such an extensive benchmark, this prior work validates our
general approach.

We pass the complete image to train the classifier to detect the
desired prediction, as seen in Fig. 1. The human makes an assessment
'I’[f'ov for the point of view of the shrimp (lateral or dorsal) and an
assessment for the rostrum integrity Tr’;. We define these outputs as
binary, e.g., ¥,,, € {0,1}, where O=Lateral and 1=Dorsal and ¥,; €
{0, 1}, where 0=Broken and 1=Good. In parallel, our discriminator ar-
chitecture makes a parallel assessment ¥ ;}’U and ¥ r’l.“ . The final decision
to raise an alert, A € {0, 1} (where 1=Alert), is made as follows:

— wAl h
Apou - Tpov o Tpav (1)
A, =¥ oP" @)

Using the exclusive OR (XOR) operator, denoted by @, this formu-
lation ensures that an alert (A = 1) is raised only if the human and Al
assessments disagree (i.e., one is 0 and the other is 1). This does not
fix the very few cases in which both commit a mistake, this in any case
is a lesser problem as it does not introduce errors that in the previous
approach were not present already.

We believe that our approach provides the best of both worlds,
human errors occur in repetitive tasks from humans losing focus,
whereas Al errors occur due to different factors. Due to our hybrid
two-factor authentication, the Al can fix the most human errors due to
loosing concentration and humans can avoid errors that the Al might
introduce.

4.2. Shrimp pose estimation

We have modelled the task of measuring the shrimp morphology
as that of a shrimp pose estimation task, where each of the joints
of the skeleton are the keypoints that will be used to estimate the
desired measurements. We draw from the rich state-of-the-art advances
in human pose estimation, in which the best performing approaches
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use a neural network to learn to predict a series of heatmaps from
which the keypoint locations are derived. We follow the work of Xu
et al. (2022) for our neural network by creating an encoder/decoder
architecture. Encoding is done using the Vision Transformer (ViT)
architecture by Dosovitskiy et al. (2021). The decoder consists of a
bilinear layer followed by a ReLU activation function and a final pose
predictor as described in Xiao et al. (2018). In our work we employ
Red-Green-Blue-Depth (RGB-D) images to further enhance the precision
of our keypoint estimations given the 3D information that the depth
channel provides.

Given an input RGB-D image of size X € R?*W*4 where H is of
192 pixels of height and W is 256 pixels of width, we perform an
initial encoding in a patch embedding space F, of smaller resolution.
Our embedding reduces the resolution by a factor of d = 16 and has
dimensions of C = 1280, which creates a patch embedding of size F, €
R7*7*C which in our work leaves us with F, € R1?¥1x1280_ From this
initial encoding F,, we apply several ViT layers which consist of a multi-
head self-attention layer ©; and then a multi-layer perceptron M LP,.
Layer normalization is applied before every F; block, we represent it
by the % symbol.

We use 16 ViT layers for our encoder. The dimensionality of the em-
bedding C remains unchanged throughout the encoding. The final form
of the encoding F; at each intermediate step i is defined by the standard
Transformer block architecture, which consists of a Multi-Head Self-
Attention (MSA) layer (©) followed by a Multi-Layer Perceptron (MLP),
both with residual connections:

F/ = Fiy +0,(F_) ®)
F,= F/ + MLP(E)) @

Our decoder architecture is a simple combination of a bilinear inter-
polation and a ReLU activation function, with the final pose prediugtor.
Given the final encoding output of our 16 ViT layers F;, € R16*16*C,
the decoder creates a set of heatmaps per each keypoint k of the virtual
skeleton and upscales by a factor of 4. The number of keypoints in
our configuration is of N, = 23 for the general case and of szvsz 22
for animals without rostrum. This yields the tensor F,, € R** 4 Nk,
Given Fj,,, the predictor optimizes an L, loss from the training data to
learn the prediction of the final position of each keypoint k. We show
in Fig. 5 a visual diagram of the shrimp pose estimation network.

In order to train such a neural network, up to 3.6 million images can
be required, as seen in Ionescu et al. (2014). To avoid such high costs in
annotation (our dataset is 12367 images), we leverage weights trained
on different tasks to bootstrap our training through transfer learning.
Our encoder has been pre-trained in other tasks/datasets to have better
encodings that will allow the pose estimation to be successful. The
datasets on which our network has been pre-trained are the Microsoft
Common Objects in Context (MS-COCO) dataset, by Lin et al. (2015),
the artificial intelligence (AI) challenger dataset, by Wu et al. (2019b)
and the Max Planck Institut Informatik (MPII) Human pose dataset,
by Andriluka et al. (2014).

4.3. Shrimp morphological regression

Once the keypoints have been found in the 2D image space, the
next step is to derive the real 3D distances. In order to do so, the
simple way to approach it is by calibrating how many centimetres
does one pixel equate to, this was the method used by the IMAFISH
method, by Navarro et al. (2016). We consider this approach our
baseline method. However, as described by Garcia et al. (2019) it yields
much more precise measurements to construct a regression model from
known instances. Following their discoveries, we construct a regression
model per measurement.

In the general case, our pose estimator returns a set of 23 keypoints
X; and from those 23 points a set of 22 measurements D,. We refer
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again to Fig. 6 for details of each keypoint and their related measure-
ments. The desired measurements must be in 3D, which we define
as DzD, but the ones we obtain from our shrimp keypoint detection
network are in 2D, defined on the image plane, which we define as
D2D,

To obtain the 3D measurements from the 2D, we propose to learn
a regression model. If one seeks to find a mapping between our 2D
measurements D?P and the real 3D measurements D3P it can be posed
as a problem of learning the coefficients of the function D;D = DZD *
a+ f. Due to the inaccuracies of our data, which come from the human
measurements, pixel quantization effects and the camera parameters,
an exact solution of a, § does not exist. Due to this reason regression
tries to find the closest hyperplane, as close to flat as possible, that
models the relation between our 2D and 3D measurements. It does
so by performing the optimization described by Vapnik et al. (1996).
Support Vector Machine (SVM) regression is well-suited for this task
because, due to the noise in the measurements (e.g., keypoint jitter),
the mapping from 2D pixel distances to 3D measurements is no longer
perfectly linear. The epsilon-insensitive loss function of SVM allows the
model to ignore small errors within a defined margin, providing robust-
ness against this noise and ensuring better generalization than standard
least-squares methods. We use this regression model as it proved to be
the best performing approximation. We obtain an individual regression
per measurement, the regression function is learned from the training
samples of DiD s DﬁD pairs. If we compare our regression approach with
the baseline of just performing a simple calibration, we can see in Table
6 that there is a substantial advantage to perform regression.

5. Experimental setup

This section will present the different experiments that were carried
out to validate the proposed approach. First, the dataset used in the
experiments is described. Then, each module, i.e., the Point of View
Discriminator, the Rostrum Discriminator, the Shrimp Pose Estimation
and the Shrimp Size Regressor will be validated separately, each with
a set of experiments aimed at demonstrating the performance of the
different modules. Finally, an overall validation will be conducted for
the whole proposed system.

5.1. Dataset

The images used in this article correspond to the SABE (Servicio
de Anélisis para Acuicultura y Biotecnologia de Alta Especializacién)
laboratory and were captured during an eight month period (August
2023 to April 2024). The images were captured using an Intel Realsense
D435 RGB-D camera. The camera was fixed with a tripod in a zenithal
position at 30 centimetres of the plane in a controlled laboratory
environment featuring a black background and similar uniform lighting
conditions.

The dataset is comprised of 12 images per animal specimen, with
each consisting of an Red-Green-Blue (RGB) image and its correspond-
ing depth map. The same animal is photographed from three different
point of views, lateral right, lateral left, and dorsal point of view at
four different angles; see Fig. 1. To clarify how these point of views
were handled, the ’lateral right’ and ’lateral left’ images were not used
to train separate networks. Instead, they were combined into a single
‘lateral’ dataset to train both the ’lateral-22’ and ’lateral-23’ models,
leveraging the anatomical symmetry of the keypoint skeleton from
either point of view.

After the imaging procedure, 2856 images containing rotten shrimp
and 2621 images that were blurred were manually discarded. The
final resulting dataset contains 12367 shrimp images, with a total
of 1223 individuals photographed. Regarding rostrum integrity, the
dataset exhibits a significant class imbalance, comprising 10,764 im-
ages with intact (’good’) rostrums and 1603 with broken rostrums (see
Table A.11). To mitigate the classification bias towards the majority
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Fig. 6. Description of the keypoint virtual skeletons (lateral and dorsal) and the extracted morphological measurements. First row: Shrimp lateral
keypoint virtual skeleton, keypoints 1 to 9 can be identified (red points), representing morphological variables of length. Keypoints 10 to 23 can be identified
(green points), representing morphological variables of heights. Second row: Shrimp dorsal keypoint virtual skeleton, keypoints 1 to 9 can be identified (red
points), representing morphological variables of length. Keypoints 10 to 23 can be identified (blue points), representing morphological variables of widths.

class inherent in such imbalances, we implemented the “two-factor”
(Human-AI) authentication system described in Section 4.1. This col-
laborative approach serves as a critical quality control layer, correcting
potential Al misclassifications driven by the data disparity. For testing
purposes 10% of all shrimp specimens, and all their images, were
separated to ensure a robust validation, all shrimp specimens used
for testing were not seen during training. We include a complete
description on the dataset creation and details in Appendix A.

For the discriminator modules, ground truth data was created to
ensure a robust verification mechanism. During image capture, re-
searchers concurrently recorded information about the point of view
(Lateral or Dorsal) and the rostrum’s integrity (Good or Broken). This
dataset includes annotations from 12367 images, comprising both
human observations and those designated as ground truth.

The ground truth data was created by having an expert geneticist
check the work of the technicians that performed the data annotation
to record the cases of human error. The dual-phase documentation
approach aims to enhance data reliability by comparing real-time ob-
servations, as done by technicians on-site, with curated post-acquisition
assessments.

All 12367 images in the dataset were annotated with the 23 key-
points that form the virtual skeleton for the ’Shrimp Pose Estimation’
module. Then, using the estimated skeleton keypoints, we extract the
morphological variables of length, height, and width. Examples of
ground truth labels and morphological variables can be found in Fig.
6. The annotations were created using a generic annotation tool, CVAT
(Computer Vision Annotation Tool), and subsequently exported in the
MS-COCO keypoint format Lin et al. (2015).

For the Shrimp Size Regressor, during image capture, information
was also collected about the actual morphological variables of the
animal, identical to those shown in Fig. 6. This information was used
in the regression model.

5.2. Proposed discriminators experiments

These study employs a ResNet-50 (He et al., 2016) inspired neural
network to improve the assessment of shrimp morphology through
binary discriminators of two different key features: point of view
and rostrum integrity. The model’s performance will be evaluated by

measuring error rates (Error %) on a test set, comparing errors from:
(1) human researchers, (2) the discriminator, and (3) their combined
system.

To quantify the improvement offered by the hybrid system, the
trained model will be compared the case in which only human assess-
ment and the case in which only artificial intelligence (AI) assessment
is provided. The idea is to demonstrate improvements in accuracy and
synergy between human expertise and machine learning.

5.3. Proposed pose estimation experiments

The experiments conducted for our Pose Estimation modules aim to
evaluate the performance in the test image subset and demonstrate its
utility for the proposed task. The test subset has been made by choosing
shrimp specimens randomly from the whole image set and making all
images of that specimen to be part of the test set. By doing this we
assure that all test individuals have never been seen during training.

The input images are first processed through the dual discriminator
system, which assesses the point of view and rostrum integrity. Based
on the initial classification, the images are routed to one of four specific
estimation neural networks: 1 (Lateral point of view + 23 keypoints),
2 (Dorsal point of view + 23 keypoints), 3 (Lateral point of view + 22
keypoints), 4 (Dorsal point of view + 22 keypoints).

The four pose estimation neural networks are trained indepen-
dently using type-specific images with the keypoint skeleton annota-
tions adapted accordingly. The pose estimation networks will be tested
individually, to asses the precision of the 2D estimations, and altogether
to asses the precision of the final 3D measurements after the whole
process is performed.

We will use commonly used metrics such as Euclidean Pixel Er-
ror (EPE) (Rong and Gang, 2024), Root Mean Square Error (RMSE),
Mean Absolute Percentage Error (MAPE) per identified keypoint of the
overall system, i.e. the four modules working as a complete system.
For individual modules, we evaluate performance using: (1) Mean
Average Precision (mAP) as in Xu et al. (2022), and (2) Percentage of
Correct keypoints (PCK) (Andriluka et al., 2014), which applies a pixel
threshold to determine correct keypoint detection.
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5.4. Proposed size regression experiments

The Support Vector Machine (SVM) regression model was selected
to accurately convert the 23 shrimp morphological variables, as illus-
trated in Fig. 6, from pixels to centimetres. To achieve an efficient
system for converting pixel measurements to centimetre measurements,
two approaches are compared. First, a non-regression method is im-
plemented using a scale factor derived from ruler images, calculated
based on the pixel distance between the 0 cm and 1 cm marks. And
secondly, the one we chose, an SVM regression-based method that uses
real measurements of all morphological variables in both centimetres
(from the image capture phase) and pixels (from annotated ground
truth data) to learn the regression coefficients.

The objective is to identify the conversion approach that delivers
the most accurate conversion from pixels to centimetres. Width and
height measurements can only be achieved through an specific point
of view as shown in Fig. 6. But length measurements can be acquired
through both point of views. We will show a comparison of precision
between using either dorsal or lateral measurements to obtain length
measurements.

6. Results

This section presents results from both quantitative and qualitative
perspectives for all experiments: the Discriminator modules, Pose Es-
timation module, and Shrimp Size Regressor module. To validate the
entire system, we will use a test subset with 1245 images, approximately
10% of the total annotated dataset with 12367 images.

6.1. Discriminator results

In this section we will describe the results we obtained when apply-
ing both of our artificial intelligence (AI) based discrimination modules
to reduce human annotation error. Implementation details will also
be described for all experiments. For all binary classification tasks in
the discriminator modules, a standard confidence threshold of 0.5 was
applied to the model’s output probabilities to determine the predicted
class labels.

6.1.1. Point of view discriminator results

Our point of view discriminator was trained to classify shrimp
images into lateral and dorsal point of views using a dataset of 12367
annotated images. The network was trained for five epochs with a
learning rate of 0.002 and a batch size of 256.

Using the test subset, we evaluated error rate, correct and incorrect
detections across three classifiers: (1) human experts, (2) artificial
intelligence (AI), and (3) our proposed hybrid system. Comparative per-
formance results are presented in Table 2. Of the whole test image set
human researchers made 8 errors (0.64%). The discriminator module
produced 0 errors (0%).

Finally, testing the “Human-AI (Ours)” system on the 1245 images
yielded a 100% accuracy rate (0.0% error), correctly classifying all 831
lateral and 414 dorsal images. This result indicates that the Al module,
in this controlled test set, effectively eliminates the 0.64% error rate
introduced by human-only annotation.

6.1.2. Rostrum integrity discriminator results

The proposed rostrum discriminator was trained to classify shrimp
images based on rostrum integrity (good or broken), using the same
dataset as the previous discriminator. The network was trained for five
epochs with a learning rate of 0.0005 and a batch size of 256.

Using the test subset, we evaluated the error rate, correctly classified
and incorrect detections with three classifiers: (1) human experts, (2)
artificial intelligence (AI), and (3) our proposed hybrid system. The
comparative results are shown in Table 2. Of the whole test image
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set human researchers made 130 errors (10.44%). The discriminator
module produced 37 errors (2.97%).

Finally, testing the complete system on the 1245 images achieved a
much improved error rate of (1.04%). In this case the hybrid approach
that combines AI and human assessments is by far the best performing
approach.

6.2. Pose estimation results

The pose estimation system includes four independent neural net-
work architectures that are used based on the animal’s point of view
(lateral or dorsal) and the rostrum integrity (good or broken). The
discriminators separate the 1245 test images into four groups, assigning
each to an appropriate pose estimation module.

To validate our choice of a ViT-Pose architecture, we conducted a
comparative analysis against two other state-of-the-art pose estimation
baselines: YOLO-Pose (Jocher and Qiu, 2025) and High-Resolution
Network (HRNet) (Yu et al., 2021). The performance of our four
specialized Imashrimp modules, alongside the comparative results from
the other baselines, is summarized in Table 3. The results show that
our specialized, ViT-Pose-based system (Imashrimp) achieves the best
general performance on the 1245 test images, with a mAP of 96.84%
and a Percentage of Correct Keypoints at a threshold of 10 pixels
(PCK@10px) of 91.67%, which justifies our architectural choice.

The 2D keypoint errors were estimated by comparing the pixel
predictions from the test set against the annotated ground truth. A
summary of this analysis is presented in Table 4, which aggregates the
results by the two main virtual skeletons (Lateral and Dorsal), as they
represent distinct anatomical structures. A more granular analysis is
provided in Appendix B, which stratifies these 2D errors across all four
specialized sub-models and includes the ‘Score’ (heatmap confidence)
metric.

We show in Fig. 7 the heatmaps generated by the pose estimation
module. They have been increased by a factor of four to provide clear
visibility, the original heatmaps can be seen in Fig. 3 and in Fig. 2.

It can be seen that the activation peaks are sharply concentrated
over the specific anatomical joints of interest, demonstrating that the
model is not relying on irrelevant background features. This high-
precision activation gives us confidence that the model is learning the
correct underlying representation of the shrimp’s skeleton as intended.

6.3. Size regressor results

This section details the conversion of 2D keypoints into 3D real-
world measurements (cm). We first conduct an extensive benchmark to
select the optimal regression model (SVM), and then we evaluate its fi-
nal performance against a baseline scale-factor method and alternative
data views.

To determine the most robust regressor, we first conducted an ex-
tensive benchmark of 14 different regression models. The performance
of these models, evaluated on their ability to convert 2D pixel measure-
ments to 3D real-world measurements (cm), is detailed in Table 5. To
clarify, the ’Sig. (vs. SVM)’ column indicates the statistical significance
of each method’s MAE when compared to the ’'SVM (Baseline)’ method
using a paired Wilcoxon signed-rank test.

While several models (e.g., K-Neighbors and Polynomial regression)
yielded a Mean Absolute Error (MAE) comparable to the Support Vector
Machine (SVM), the SVM was selected as the optimal model. This deci-
sion was based on its low MAE combined with a more constrained 95%
Confidence Interval (CI), which indicates a higher level of prediction,
consistency, and reliability.

Having justified the selection of SVM, we then performed a high-
level comparison between the optimized regression-based approach
(SVM) and the baseline scale-factor (non-regression) method. This com-
parison is shown in Table 6.
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Table 2
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Classification performance of human, artificial intelligence (AI), and hybrid approaches for point of view and rostrum integrity discrimination.

Point of view discriminator

Rostrum integrity discriminator

Classifier Error (%) Correct Incorrect Classifier Error (%) Correct Incorrect
Human 0.64 1237 8 Human 10.44 1115 130

Al 0.00 1245 0 Al 2.97 1208 37
Human-AI (Ours) 0.00 1245 0 Human-AI (Ours) 1.04 1232 13

Table 3
Performance of the pose estimation modules on the test dataset (D,.,images) depending on the classification of the discriminator modules for Imashrimp, Yolo
and HRNet.
mAP 50:95 (%) PCK@10px (%)
Sub-Model N° images Imashrimp (Ours) Yolo HRNet Imashrimp (Ours) Yolo HRNet
dorsal-22 73 96.44 83.73 94.86 93.28 88.48 90.90
lateral-22 144 98.40 85.86 95.24 90.18 81.00 88.54
dorsal-23 341 93.11 71.50 89.89 90.86 80.24 85.43
lateral-23 687 99.40 88.97 95.97 92.38 80.32 82.96
General 1245 96.84 82.51 93.82 91.67 82.51 86.99
Table 4

Comparative 2D error analysis between real and predicted keypoints for the Lateral and Dorsal point of view. Abbreviation: px: pixel.

Point Lateral Point of View Dorsal Point of View
EPE (px) RMSE (px) MAPE (%) EPE (px) RMSE (px) MAPE (%)

1 11.97 + 36.29 27.02 0.92 12.54 + 15.64 14.17 1.22
2 3.19 + 1.78 2.58 0.30 3.98 + 2.26 3.24 0.37
3 3.42 + 2.07 2.83 0.32 391 + 231 3.21 0.35
4 4.59 + 3.45 4.06 0.42 4.46 + 2.83 3.73 0.40
5 4.90 + 3.27 4.17 0.46 5.20 + 3.30 4.35 0.46
6 3.62 = 2.18 2.99 0.35 3.78 + 2.09 3.05 0.34
7 3.31 + 1.94 2.71 0.31 3.65 + 2.06 2.96 0.34
8 3.64 + 2.15 2.99 0.36 3.62 + 1.95 2.91 0.37
9 8.79 = 5.14 7.20 0.71 9.78 + 5.33 7.87 0.89
10 5.58 + 7.24 6.47 0.49 6.33 + 5.05 5.73 0.55
11 7.36 + 8.53 7.97 0.68 6.55 + 5.44 6.02 0.58
12 3.52 + 2.17 2.92 0.33 4.39 + 2.60 3.60 0.40
13 6.09 + 5.23 5.68 0.54 4.49 + 2.66 3.69 0.41
14 3.88 + 4.28 4.09 0.35 3.95 + 2.40 3.27 0.36
15 4.69 + 4.59 4.64 0.42 4.08 + 2.41 3.35 0.37
16 4.42 = 3.75 4.10 0.41 4.11 + 2.44 3.38 0.37
17 4.54 + 3.22 3.94 0.41 4.30 + 2.54 3.53 0.39
18 4.12 + 5.28 4.74 0.40 4.25 + 2.60 3.52 0.39
19 4.75 + 5.33 5.05 0.44 4.07 + 2.39 3.33 0.37
20 3.42 + 2.02 2.81 0.33 3.98 + 2.22 3.22 0.38
21 4.96 + 3.18 4.17 0.47 3.86 + 2.24 3.15 0.35
22 3.88 + 2.42 3.24 0.39 4.65 + 2.69 3.80 0.45
23 3.76 + 2.22 3.09 0.36 4.69 + 2.66 3.82 0.46
General 4.80 + 8.23 6.75 0.44 4.92 + 4.64 4.78 0.45

Fig. 7. Visualization of pose estimation interpretability and keypoint accuracy. The model’s activation heatmaps are overlaid on representative dorsal (left) and
lateral (right) test images. Magnified insets illustrate the Euclidean Pixel Error (EPE), showing the distance between the model’s prediction (red point) and the
ground truth (blue point).
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Table 5
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Comparative performance analysis of regression methods for 2D keypoint to 3D measurement conversion. All models were evaluated using 2D pose estimations
generated by the baseline ViT-Pose Huge configuration. Abbreviations: IC% (MAE): 95% Confidence Interval, SGB: Stochastic Gradient Boosting.

Method MAE (cm) IC 95% (MAE) RMSE (cm) MAPE (%) p-value (vs. SVM)
Ridge 0.10 + 0.30 [0.09, 0.11] 0.32 5.14 4.0e-2
SGB 0.09 + 0.27 [0.08, 0.10] 0.28 4.79 3.0e-2
Quantile 0.10 + 0.30 [0.09, 0.11] 0.32 5.02 1.5e-2
MLP 0.14 + 0.51 [0.13, 0.15] 0.49 5.60 1.0e—4
Linear 0.12 + 0.35 [0.11, 0.13] 0.37 5.44 9.0e-3
Log-Lin 0.15 + 0.47 [0.13, 0.16] 0.48 5.78 4.0e—4
Lin-Log 0.10 + 0.30 [0.09, 0.11] 0.31 5.13 2.5e-2
Log-Log 0.12 + 0.38 [0.11, 0.14] 0.40 5.46 5.0e-3
Polynomial 0.08 + 0.26 [0.07, 0.09] 0.27 4.64 8.3e-2
k-neighbors 0.08 + 0.26 [0.07, 0.09] 0.27 4.67 6.0e—2
Kernel 0.11 + 0.34 [0.10, 0.12] 0.44 5.73 2.0e-3
Decision Tree 0.09 + 0.27 [0.08, 0.10] 0.30 4.95 3.1e-2
Random Forest 0.08 + 0.27 [0.08, 0.09] 0.29 4.83 1.5e-1
SVM 0.08 + 0.25 [0.07, 0.08] 0.25 4.56 -
Table 6

Comparative analysis of the 3D error between ground truth and Imashrimp’s predicted measurements for all white shrimp morphological variables according to

the conversion method. (Significance test: *** p < 0.001).

Conversion not using regression

Conversion using SVM regression

Variable MAE (cm) IC 95% (MAE) RMSE (cm) MAPE (%) Variable MAE (cm) IC 95% (MAE) RMSE (cm) MAPE (%)
total 0.92 + 1.06 [0.75, 1.10] 1.31 6.55 total 0.54 + 0.69 [0.45, 0.62] 0.77 3.76
abdomen 0.22 + 0.23 [0.75, 1.10] 0.29 2.31 abdomen 0.20 + 0.23 [0.17, 0.24] 0.26 2.03
1_1seg 0.10 + 0.12 [0.09, 0.13] 0.14 8.00 1_1seg 0.09 + 0.11 [0.08, 0.10] 0.11 6.76
1.2seg 0.12 + 0.11 [0.09, 0.12] 0.15 10.79 1_.2seg 0.07 + 0.09 [0.06, 0.08] 0.09 6.18
1_3seg 0.10 + 0.14 [0.09, 0.12] 0.15 7.89 1_.3seg 0.09 + 0.12 [0.07, 0.10] 0.12 6.29
14seg 0.16 + 0.11 [0.16, 0.19] 0.18 16.47 1 4seg 0.09 + 0.11 [0.08, 0.10] 0.11 8.34
1_.5seg 0.22 + 1.09 [0.10, 0.34] 1.09 11.30 1.5seg 0.20 + 1.10 [0.05, 0.30] 1.11 7.79
1.6seg 0.12 + 0.10 [0.12, 0.15] 0.15 6.21 1_6seg 0.06 + 0.08 [0.06, 0.07] 0.08 3.25
1_head 0.30 + 0.38 [0.25, 0.34] 0.41 6.07 _head 0.14 + 0.19 [0.11, 0.16] 0.21 2.76
Lengths 0.17 + 0.46 [0.15, 0.19] 0.46 9.42 Lengths 0.10 + 0.43 [0.08, 0.12] 0.43 5.80
h_head 0.12 + 0.18 [0.10, 0.15] 0.18 5.67 h_head 0.11 + 0.16 [0.08, 0.13] 0.17 4.86
h_1seg 0.10 + 0.12 [0.08, 0.11] 0.12 4.70 h_1seg 0.08 + 0.10 [0.07, 0.09] 0.10 3.70
h_2seg 0.08 + 0.10 [0.06, 0.09] 0.11 3.61 h_2seg 0.07 + 0.10 [0.05, 0.08] 0.10 3.03
h_3seg 0.07 + 0.10 [0.06, 0.08] 0.10 3.15 h_3seg 0.07 + 0.10 [0.06, 0.08] 0.10 2.84
h_4seg 0.08 + 0.09 [0.07, 0.09] 0.11 3.78 h_4seg 0.06 + 0.09 [0.04, 0.06] 0.09 2.48
h_5seg 0.09 + 0.11 [0.08, 0.11] 0.12 4.83 h_5seg 0.07 + 0.10 [0.06, 0.09] 0.10 3.63
h_6seg 0.04 + 0.08 [0.03, 0.05] 0.08 2.69 h_6seg 0.05 + 0.08 [0.04, 0.06] 0.08 2.96
Heights 0.08 + 0.12 [0.08, 0.09] 0.12 4.06 Heights 0.07 + 0.11 [0.06, 0.08] 0.11 3.36
w_head 0.13 + 0.11 [0.13, 0.16] 0.16 8.20 w_head 0.08 + 0.1 [0.06, 0.09] 0.10 4.87
w_lseg 0.14 + 0.10 [0.12, 0.15] 0.16 9.44 w_lseg 0.07 + 0.08 [0.06, 0.07] 0.08 4.50
w_2seg 0.20 + 0.07 [0.19, 0.21] 0.21 13.97 w_2seg 0.06 + 0.07 [0.05, 0.06] 0.07 3.82
w_3seg 0.15 + 0.06 [0.14, 0.17] 0.17 12.32 w_3seg 0.04 + 0.06 [0.04, 0.05] 0.06 3.42
w_4seg 0.12 + 0.06 [0.12, 0.14] 0.14 11.48 w_4seg 0.04 + 0.05 [0.04, 0.05] 0.06 4.02
w_5seg 0.10 + 0.06 [0.10, 0.12] 0.11 10.03 w_5seg 0.05 + 0.06 [0.04, 0.05] 0.06 4.75
w_6seg 0.07 + 0.06 [0.07, 0.09] 0.08 9.20 w_bseg 0.04 + 0.05 [0.04, 0.05] 0.05 5.58
Widths 0.13 + 0.09 [0.12, 0.14] 0.15 10.49 Widths 0.05 + 0.07 [0.05, 0.06] 0.07 4.50
General 0.13 + 0.28 [0.12, 0.14] 0.28 8.14 General 0.08 + 0.25%** [0.07, 0.08] 0.25 4.56

To validate the observed differences, a paired Wilcoxon signed-
rank test was performed on the error distributions of the two methods.
The “General” MAE for the SVM regression approach was found to be
statistically significant (p = 0.00039), confirming its superiority over the
non-regression method. This significance is denoted in the table with
asterisks (*** p < 0.001).

To clarify the aggregation method used in Table 6, the metrics for
each “Morphological Variable” (e.g., ’l_head’) are calculated by averag-
ing the errors for that specific measurement across all test specimens.
The “General” metrics are computed by first pooling all individual
measurements (all variables from all specimens) into a single dataset,
and then calculating the overall MAE, RMSE, and MAPE from this com-
plete pool. The “General” MAE, therefore, represents the average error
expected from any single measurement performed by the Imashrimp
system.
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Morphological lengths were calculated from keypoints distributed
along the shrimp virtual skeleton in both lateral and dorsal point of
views (Fig. 6). To determine the optimal point of view for retrieving
length variables, the test subset with the same animals photographed
laterally and dorsally was used to compare which point of view pro-
vided the most accurate length measurements. The comparison results
are presented in Table 7.

A paired Wilcoxon signed-rank test confirmed that the difference
in the general ‘Lengths’ metric between the two point of views is
statistically significant (p = 0.019). Based on this result, and to ensure
maximum precision for genetic selection, our system is configured to
derive length measurements exclusively from the Lateral point of view,
rather than using Dorsal estimations as a fallback.

Overall we can see that our regression obtains measurements with
less than a millimetre of error on average. When assessing the full
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Comparative error analysis of using Lateral or Dorsal point of view to measure length variables. (Significance test: * p < 0.05).

Lateral Point of View Network

Dorsal Point of View Network

Variable MAE (cm) IC 95% (MAE) RMSE (cm) MAPE (%) Variable MAE (cm) IC 95% (MAE) RMSE (cm) MAPE (%)
1_1seg 0.09 + 0.11 [0.08, 0.10] 0.11 6.76 1_1seg 0.10 + 0.11  [0.09, 0.11] 0.11 7.05
1_2seg 0.07 + 0.09 [0.06, 0.08] 0.09 6.18 1_2seg 0.07 + 0.10 [0.06, 0.09] 0.10 6.80
1_3seg 0.09 + 0.12 [0.07, 0.10] 0.12 6.29 1_3seg 0.09 + 0.13 [0.08, 0.11] 0.13 6.70
1_4seg 0.09 + 0.11 [0.08, 0.10] 0.11 8.34 1_4seg 0.09 + 0.11 [0.08, 0.10] 0.11 8.45
1_.5seg 0.20 + 1.10 [0.05, 0.30] 1.11 7.79 1 5seg 0.19 + 1.09 [0.06, 0.30] 1.09 7.88
1_6seg 0.06 + 0.08 [0.06, 0.07] 0.08 3.25 1_6seg 0.07 + 0.09 [0.07, 0.09] 0.09 3.67
1_head 0.14 + 0.19 [0.11, 0.16] 0.21 2.75 1_head 0.19 + 0.26  [0.17, 0.23] 0.26 3.93
Lengths  0.10* + 0.43 [0.08, 0.12] 0.43 5.80 Lengths  0.12 + 0.43 [0.01, 0.14] 0.43 6.32

length estimation of the shrimp the error is also quite low, 5 millime-
tres, but is affected by the detection of the rostrum. This in any case is
not very relevant as morphological measurements for the full length but
ignoring the rostrum yields an much lower overall error of 2 millimetre.
It has to be underlined that in the are that we ignore the animal has
no meat content.

6.4. Ablation study

To quantify the contribution of our system’s core components and
validate our architectural choices, we conducted a comprehensive ab-
lation study. We established our baseline model (the full Imashrimp
system: ViT-Pose Huge, RGB-D input, and both discriminators active)
and systematically ablated three key aspects: (1) the dual discrimina-
tion modules, (2) the contribution of the depth (D) channel, and (3) the
effect of the pose estimation model size. The results of this study are
presented in Table 8, reporting 2D pose estimation performance (mAP
and PCK). We now describe in detail the results for each of the ablated
parameters:

Impact of Discrimination Modules: The first set of experiments
(Rows 1-3) demonstrates the critical role of the discriminators. Dis-
abling both the point of view (POV) and rostrum integrity (RI) modules
causes the mAP to drop significantly from 96.84% to 91.62%, as the
system attempts to process images with the incorrect pose estimation
models.

Disabling only the RI, or only the POV, modules also results in a
substantial performance degradation (93.53% mAP and 92.62% mAP,
respectively). It is worth noting that the ablation of the discriminator
module implies leaving the initial human error, that was quantified in
Table 2.

Impact of Depth Channel (RGB-D vs. RGB): The resulting mAP
dropped from 96.84% to 90.81%. This shows the addition of depth
information to be a godd regularizer for keypoint detection in our case.

Impact of Model Size: We compared our ViTPose Huge model
against its smaller variants (Large, Base, and Small). The ViTPose
Huge model (96.84% mAP) significantly outperforms all smaller archi-
tectures, which achieved mAP scores clustering between 89.89% and
90.70%. This result justifies our choice of the larger “Huge” architec-
ture, indicating that the complexity of the shrimp pose estimation task
benefits from the increased model capacity.

6.5. End-to-end results

Quantitative results of the complete system can be seen in Table 6,
while qualitative results are shown in Fig. 8 where keypoint outputs
are combined into a skeleton and visually represented. Furthermore,
the size regressor converts pixel-based morphological variables into
centimetres.

To demonstrate the qualitative robustness and versatility of the
pose estimation system, predictions were performed on a dataset with
scenarios not included in training. These include images varying back-
grounds and different camera distances. Examples of these results are
presented in Fig. 9.
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7. Discussion and conclusion

The primary contribution of this work is the introduction of
Imashrimp, an artificial intelligence (AI) system comprising multiple
integrated modules designed to automate morphological analysis of
white shrimp (Penaeus vannamei) and minimize human error. To our
knowledge, no previous studies have applied body pose estimation
techniques to shrimp or performed regression analysis of 23 morpho-
logical variables using RGB-D images. Another key feature is its dual
discrimination modules, which learn to identify shrimp point of view
(lateral or dorsal) and rostrum integrity (good or broken), which, as
shown, significantly reduces human annotation error.

The results are promising and could improve genetic selection by
automating phenotypic analyses, enabling larger population studies
with fewer errors. For the complete test subset of 1245 images, discrim-
inators operating as a two-factor authentication system reduced human
error in point of view discrimination from 0.64% to 0% and in rostrum
integrity discrimination from 10.44% to 1.04%.

The pose estimation module demonstrated robust performance,
which served as a precise foundation for the subsequent 2D-to-3D mea-
surement regression. Qur SVM-based conversion module successfully
retrieved morphological variables, achieving a general Mean Absolute
Error (MAE) of 0.08 + 0.25 cm.

Obtaining such high precision 3D measurements opens a wide ar-
ray of possibilities. Imashrimp will greatly increase the number of
specimens that are considered for genetic selection, making the ge-
netic selection much more robust and providing significant economic
benefits to aquaculture companies that employ such system. Specifi-
cally, manual phenotyping of 23 variables on dead specimens typically
requires two operators and approximately 9 min per animal, while
even a simplified analysis on live animals (4 variables) takes about
2 min. In contrast, Imashrimp requires only a single operator for image
acquisition and processes the comprehensive morphometric data in just
32 ms per image, representing a massive reduction in labour costs
and time. In terms of operational efficiency, the system achieves an
inference speed of approximately 31 Frames Per Second (FPS) (32 ms
per image) on a workstation with a dedicated Graphics Processing
Unit (GPU) (see Appendix A), demonstrating its feasibility for real-time
high-throughput applications in industrial breeding facilities..

8. Limitations and future work

Despite this performance, we acknowledge several limitations that
define the scope of this work:

First, the model was trained and validated exclusively in a con-
trolled laboratory setting with uniform backgrounds and lighting. Its
robustness to ’in-the-wild’ conditions, such as the variable lighting,
water reflections, and occlusions found in industrial processing plants,
has not yet been quantified experimentally (e.g., via PCK drop analysis)
due to the lack of a ground-truth annotated dataset for these unstruc-
tured environments. Therefore, the current “in-the-wild” results (Fig.
9) remain qualitative demonstrations of potential transferability.



R.G. Abiam et al.

Table 8

Engineering Applications of Artificial Intelligence 165 (2026) 113493

Ablation study evaluating the impact of discriminators Point of View/Rostrum Integrity (POV/RI), input data (RGB-D vs. RGB),

and model size (ViTPose variant) on pose estimation accuracy.

Discrimination Pose Estimation

POV RI Input Model mAP 50:95 (%) PCK@10px (%)
False False RGB-D ViT-Pose Huge 91.62 89.88

True False RGB-D ViT-Pose Huge 93.53 91.45

False True RGB-D ViT-Pose Huge 92.62 90.75

True True RGB ViT-Pose Huge 90.81 82.98

True True RGB-D ViT-Pose Large 90.09 82.83

True True RGB-D ViT-Pose Base 89.89 83.01

True True RGB-D ViT-Pose Small 90.70 83.39

True True RGB-D ViT-Pose Huge 96.84 91.67
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Fig. 8. Test results for the whole proposed system, in which classify information, keypoints and specimen morphological variables in centimetres are shown
for each detected shrimp instance. The images show several results of the test dataset depending on the Pose Estimation network by which they have been
processed: (1) Lateral Pose Estimation - 23 keypoints, (2) Dorsal Pose Estimation - 23 keypoints, (3) Lateral Pose Estimation - 22 keypoints and (4)

Dorsal Pose Estimation - 22 keypoints.

Second, the current system is dependent on 4-channel RGB-D data
to achieve its reported accuracy. This dependence on specialized cam-
eras limits its immediate applicability in settings equipped only with
standard RGB cameras. Future work will focus on bridging this perfor-
mance gap, potentially through domain adaptation or advanced data
augmentation, to create a robust system that relies solely on standard
RGB imagery.

Second, the current system is dependent on 4-channel RGB-D data to
achieve its reported accuracy. This dependence on specialized cameras
limits its immediate applicability in settings equipped only with stan-
dard RGB cameras. While utilizing standard RGB cameras would reduce
hardware costs, our ablation results indicate that this significantly
compromises performance (dropping from 96.84% to 90.81% mAP)
while offering a negligible improvement in inference speed (31 ms vs.
32 ms). Consequently, to maintain the precision required for genetic
selection, the current minimum viable hardware configuration for field
adoption must include a depth-sensing (RGB-D) capability and a CUDA-
enabled GPU. Future work will focus on bridging this performance gap,
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potentially through domain adaptation or advanced data augmentation,
to create a robust system that relies solely on standard RGB imagery.

Third, the model was trained and validated exclusively on Penaeus
vannamei. While generalization to morphologically distinct species
would require a complete re-annotation, we hypothesize that the
IMASHRIMP framework could be directly applied to other commer-
cially relevant species within the same Litopenaeus subgenus (e.g.,
Litopenaeus stylirostris or Litopenaeus setiferus) due to their similar mor-
phology. Consequently, we anticipate that extending the system to
these related species would require either zero or, at most, limited
labelling (transfer learning) for validation, rather than a full dataset
overhaul.

Finally, as the dataset is proprietary due to commercial confiden-
tiality, external reproducibility is limited, a factor we have aimed to
mitigate through detailed methodological descriptions. These limita-
tions also highlight future applications, such as employing Imashrimp
in packaging plants where manual measurements are currently infea-
sible. This would provide companies with richer data for strategic
planning.
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Fig. 9. Evaluation of the proposed system in-the-wild, The proposes system is tested in an array of situations not seen during training and classification
information and keypoints are shown for each detected shrimp instance. The images show several results depending on the experiment: First and second row:
Different backgrounds at the same distance and Third row: Different distances to the plane 30 cm, 40 cm and 60 cm.
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Appendix A. Implementation, dataset, and hardware details

To ensure methodological transparency and aid reproducibility, this
appendix provides detailed information on the dataset, training hyper-
parameters, and the hardware environment used for all experiments.

A.1. Hardware and inference performance

All training and inference benchmarks were conducted on the hard-
ware configuration detailed in Table A.9. The inference performance of
the final, end-to-end Imashrimp system (including discrimination, pose
estimation, and regression) is reported in Table A.10.

A.2. Dataset details
We now detail the whole process of how the dataset was created,

the tools used, the precise process, and the final characteristics of the
constructed dataset.
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Table A.9

Hardware Specifications. Abbreviations: CPU: Central Processing Unit; GB:
Gigabytes; GPU: Graphics Processing Unit; RAM: Random Access Memory;
VRAM: Video Random Access Memory.

Component Specification

CPU AMD Ryzen 9 7950X 16-Core Processor
GPU NVIDIA GeForce RTX 3090

VRAM 24 GB

System RAM 64 GB

Operating System Windows 10 Enterprise 64-bit

A.2.1. Data acquisition and labelling protocol

As described in Section 5.1, all images were captured in a controlled
laboratory setting with constant, uniform lighting and a consistent
black background.

The labelling protocol involved several stages to ensure high-quality
annotations:

1. Initial Training: Annotators were instructed by morphological
experts on the 23 keypoints and the use of the CVAT annotation
tool.

2. Manual Annotation: The initial batch of images was fully an-
notated manually.

3. Al-Assisted Annotation: Once the pose estimation models
achieved sufficient accuracy, an auto-labelling pipeline was
implemented. Annotators then focused on correcting minor in-
accuracies, significantly speeding up the process.

4. Expert Review: Crucially, every annotation (both manual and
corrected) was subsequently reviewed and validated by a mor-
phological expert to ensure correctness and consistency. This
two-step process (annotation + expert review) served to maxi-
mize inter-annotator reliability.

A.2.2. Dataset split and class balance

The full dataset of 12,367 images was split into training (80%),
validation (10%), and test (10%) sets. This split was performed at the
specimen level, ensuring that no single shrimp appears in more than
one set, which validates the model’s ability to generalize to unseen
individuals.

The specific datasets for the pose estimation models were derived
from this split as follows:

+ 23-Keypoint Models (e.g., lateral-23): To train the models for the
complete skeleton, only images where the rostrum was intact
(“rostrum good”) were selected. Images corresponding to “ros-
trum broken” were excluded from this dataset, as they physically
lack keypoint 1.

22-Keypoint Models (e.g., lateral-22): To train the models that
operate without the rostrum tip, the entire dataset (12,367 im-
ages) was used, including both “rostrum good” and “rostrum
broken” images. For this dataset, the ground truth was adapted
by systematically removing keypoint 1 from all annotations.

The class balance for the discriminator modules and the resulting
image counts for each pose estimation model are detailed in Tables
A.11 and A.12, respectively.

A.3. Training hyperparameters and data augmentation

All models were trained using the parameters specified in
Table A.13. The pose estimation models were initialized from ViTPose
Huge weights pre-trained on MS-COCO/MPII, with the input layer
modified to accept 4 channels (RGB-D).

Data Augmentation (Pose Estimation) To ensure robustness, the
following augmentation pipeline was applied sequentially during the
training of all pose estimation models:
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Table A.10
System Performance and Resource Usage. Abbreviations: FPS: Frames Per
Second, ms: milliseconds.

Metric Training Test
Inference Time per Image 140 ms 32 ms
Frames Per Second 7 FPS 32 FPS
VRAM Usage 22 GB 8 GB
GPU Core Load 82% 35%
CPU Load 20% 20%
Table A.11
Class balance for discriminator modules.
Module Class Train Validation Test Total
Point of View Lateral 6816 821 831 8468
Dorsal 3079 406 414 3899
Rostrum Integri Good 8700 1047 1017 10764
grity Broken 1195 180 228 1603
Total Images 9895 1227 1245 12367
Table A.12
Image counts for pose estimation models.
Model Train Validation Test Total
Lateral-23 5997 701 679 7377
Lateral-22 6816 821 831 8468
Dorsal-23 2703 346 338 3387
Dorsal-22 3079 406 414 3899

Image Loading: Load the 4-channel RGB-D image.

Geometric Augmentation I (Flip): Apply a top-down random
flip with a 50% probability.

Geometric Augmentation II (Half-Body): Apply a half-body
transform, focusing on a subset of 8 keypoints with a 30% prob-
ability.

Geometric Augmentation III (Scale/Rotation): Apply random
scaling (up to 0.5 scale factor) and random rotation (up to 40
degrees).

Affine Transform: Apply the final affine transformation based on
the geometric augmentations.

Tensor Conversion: Convert the augmented image to a tensor.
Normalization: Normalize the tensor using pre-calculated mean
and std values.

Target Generation: Generate the target heatmaps from keypoint
coordinates (using a sigma of 2).

Data Collection: Collect the final keys required for model train-
ing.

Appendix B. Detailed 2D error and confidence score analysis

This section provides a detailed, stratified analysis of the 2D pose
estimation performance. The pixel predictions from the test set were
compared to the annotated ground truth to provide a granular 2D
error analysis. These errors are presented in Tables B.14 and B.15,
showing the performance for each keypoint across all four specialized
sub-models (Lateral-23, Lateral-22, Dorsal-23, and Dorsal-22). This
table includes standard 2D error metrics (EPE (px), RMSE (px), and
MAPE (%)) and a ‘Score’ column, which reports the average heatmap
confidence (i.e., heatmap variance) for each keypoint as a measure of
the model’s prediction certainty.

Data availability

The authors do not have permission to share data.
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Table A.13
Training hyperparameters. Abbreviations: MSE: Mean Square Error; BCE: Binary Cross-Entropy; BS: Batch Size; LR: Learning Rate;
Funct.: Function; ViT-Pose-H: Vit-Pose-Huge.

Module Architecture Optimizer Loss Funct. LR BS Epochs Checkpoint Criterion
Point of View Disc. ResNet-50 Adam BCELoss 0.00200 256 5 Best Validation Error
Rostrum Disc. ResNet-50 Adam BCELoss 0.00050 256 5 Best Validation Error
Pose Est. (Dorsal-22) RGBD ViTPose-H Adam JointsMSELoss 0.00010 16 210 Best Validation Loss
Pose Est. (Dorsal-23) RGBD ViTPose-H Adam JointsMSELoss 0.00070 16 210 Best Validation Loss
Pose Est. (Lateral-22) RGBD ViTPose-H Adam JointsMSELoss 0.00007 16 210 Best Validation Loss
Pose Est. (Lateral-23) RGBD ViTPose-H Adam JointsMSELoss 0.00007 16 210 Best Validation Loss

Table B.14

Comparative 2D error analysis for Dorsal sub-models (Dorsal-22 and Dorsal-23).
Point Dorsal-22 sub-model Dorsal-23 sub-model

EPE (px) RMSE (px) MAPE (%) Score EPE (px) RMSE (px) MAPE (%) Score

1 - - - - 12.44 + 15.71 14.17 1.17 0.71
2 3.18 + 2.23 2.74 0.30 0.95 3.77 + 2.10 3.05 0.35 0.93
3 3.46 + 2.02 2.84 0.32 0.94 3.41 + 1.91 2.76 0.31 0.94
4 4.05 + 2.62 3.41 0.36 0.93 4.04 + 2.76 3.46 0.36 0.92
5 5.26 + 3.57 4.50 0.45 0.91 5.04 + 3.22 4.23 0.45 0.93
6 2.98 + 1.62 2.40 0.27 0.93 3.36 + 1.97 2.75 0.31 0.94
7 3.07 + 1.69 2.48 0.30 0.95 3.21 + 1.80 2.60 0.31 0.93
8 2.89 + 1.63 2.35 0.28 0.98 297 + 1.70 2.42 0.30 0.93
9 7.15 + 4.13 5.84 0.65 0.80 8.21 + 3.68 6.36 0.85 0.82
10 8.61 + 9.17 8.89 0.72 0.81 9.79 + 5.21 7.84 0.84 0.75
11 8.74 + 9.56 9.16 0.76 0.83 9.58 + 5.55 7.83 0.83 0.76
12 4.02 + 2.88 3.50 0.36 0.96 4.08 + 2.64 3.44 0.35 0.95
13 3.85 + 2.73 3.34 0.34 0.95 4.14 + 2.71 3.50 0.37 0.96
14 3.42 + 2.51 3.00 0.30 0.96 3.91 + 2.29 3.20 0.34 0.96
15 3.30 + 2.14 2.78 0.30 0.95 3.75 + 2.32 3.12 0.33 0.96
16 3.78 + 2.62 3.25 0.32 0.96 4.20 + 4.05 4.13 0.37 0.95
17 3.78 + 2.54 3.22 0.32 0.95 4.11 + 2.76 3.50 0.36 0.94
18 3.76 + 2.58 3.22 0.32 0.94 4.10 + 2.70 3.47 0.37 0.96
19 3.67 + 2.35 3.08 0.31 0.94 3.91 + 2.67 3.35 0.34 0.95
20 3.09 + 2.08 2.64 0.27 0.96 3.41 + 2.99 3.21 0.32 0.96
21 3.11 + 2.01 2.62 0.28 0.96 3.34 + 2.89 3.13 0.31 0.96
22 3.96 + 2.68 3.38 0.38 0.94 4.51 + 3.06 3.85 0.43 0.93
23 3.98 + 2.74 3.42 0.37 0.95 4.44 + 3.21 3.87 0.42 0.93
General 22KP 4.23 + 4.08 4.15 0.38 0.93 4.52 + 3.15 3.90 0.42 0.89
General 23KP - - - - 4.87 + 4.78 4.82 0.45 0.92

Table B.15

Comparative 2D error analysis for Lateral sub-models (Lateral-22 and Lateral-23).
Point Lateral-22 sub-model Lateral-23 sub-model

EPE (px) RMSE (px) MAPE (%) Score EPE (px) RMSE (px) MAPE (%) Score

1 - - - - 11.66 + 35.24 26.25 0.88 0.74
2 3.01 + 1.84 2.49 0.28 0.94 2.74 + 1.53 2.22 0.25 0.96
3 3.66 + 2.38 3.09 0.32 0.93 2.99 + 1.90 2.51 0.27 0.94
4 5.12 + 3.88 4.54 0.45 0.91 3.88 + 3.10 3.52 0.35 0.93
5 4.80 + 3.31 4.12 0.43 0.89 4.29 + 3.11 3.75 0.40 0.93
6 3.27 + 1.79 2.64 0.31 0.93 3.17 + 2.11 2.69 0.30 0.94
7 3.19 + 2.09 2.70 0.32 0.94 2.79 + 1.75 2.33 0.27 0.95
8 3.40 + 2.03 2.80 0.35 0.94 3.15 + 2.06 2.66 0.32 0.95
9 7.62 + 3.25 5.86 0.78 0.74 7.53 + 13.54 10.96 0.65 0.80
10 8.97 + 4.55 7.12 0.76 0.77 9.55 + 6.03 7.99 0.82 0.78
11 11.10 + 8.83 10.03 1.02 0.80 6.00 + 6.58 6.30 0.56 0.87
12 3.69 + 2.53 3.17 0.33 0.92 3.09 + 1.89 2.56 0.27 0.94
13 7.76 + 6.95 7.37 0.70 0.83 4.97 + 4.58 4.78 0.44 0.92
14 3.97 + 2.66 3.38 0.36 0.92 3.37 + 4.52 3.98 0.30 0.94
15 4.78 + 3.00 3.99 0.43 0.90 3.93 + 4.70 4.34 0.35 0.93
16 4.59 + 3.28 3.99 0.40 0.91 3.93 + 6.13 5.15 0.37 0.93
17 4.53 + 3.15 3.91 0.41 0.89 3.93 + 5.45 4.75 0.37 0.93
18 3.90 + 2.80 3.40 0.37 0.92 3.59 + 5.49 4.64 0.35 0.94
19 4.77 + 3.48 4.18 0.44 0.89 4.09 + 5.10 4.62 0.39 0.93
20 3.35 + 2.08 2.79 0.33 0.94 2.87 + 1.71 2.36 0.28 0.94
21 5.55 + 3.99 4.83 0.52 0.88 4.40 + 5.08 4.75 0.42 0.93
22 3.41 + 2.14 2.85 0.36 0.94 3.34 + 2.14 2.81 0.34 0.96
23 3.42 + 191 2.77 0.33 0.94 3.38 + 2.10 2.82 0.32 0.95
General 22KP 4.90 + 4.21 4.57 0.46 0.89 4.14 + 3.65 3.90 0.38 0.90
General 23KP - - - - 4.46 + 8.31 6.67 0.40 0.92
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