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 A B S T R A C T

Manual morphological analysis for genetic selection in Penaeus vannamei aquaculture is a slow, error-prone 
bottleneck. We introduce Imashrimp, an automated system that uses colour and depth images to optimize this 
task by adapting deep learning and computer vision techniques to shrimp morphology. Imashrimp incorporates 
two discrimination modules to classify images by the point of view and determine rostrum integrity. These 
modules function as a ‘‘two-factor authentication’’ (human and Artificial Intelligence) system to validate 
annotations; this approach reduced metadata annotation errors, cutting point of view classification errors 
from 0.64% to 0% and rostrum integrity errors from 10.44% to 1.04%. A transformer-based pose estimation 
module predicts 23 keypoints on the shrimp’s skeleton, achieving a general Mean Average Precision of 
96.84% and a Percentage of Correct Keypoints of 91.67%. The resulting Two-Dimensional measurements are 
transformed into Three-Dimensional measurements using a Support Vector Machine regression. By achieving 
a final Mean Absolute Error (MAE) of 0.08±0.25 cm, IMASHRIMP demonstrates the potential to automate 
and accelerate shrimp morphological analysis, enhancing the efficiency of genetic selection and contributing 
to more sustainable aquaculture practices.
1. Introduction

Aquaculture provides a sustainable source of aquatic food that 
meets the nutritional demands of modern societies. In 2022, for the 
first time in history, aquaculture production surpassed that of capture 
fisheries, and it is expected to continue expanding in the coming years. 
This rapid expansion necessitates improvements in data collection and 
the development of novel analytical tools to ensure its sustainability. 
At the species level, white-leg shrimp (Penaeus vannamei) led global 
aquaculture production in 2022, with 6.8 million tonnes produced. 
Ecuador emerged as the world’s leading exporter, in large part due to 
its sustained efforts to modernize production systems and implement 
genetic breeding programs (Food and Agriculture Organization of the 
United Nations (FAO), 2024).

∗ Corresponding author.
E-mail address: abiam.remache101@alu.ulpgc.es (R.G. Abiam).

In response to the anticipated increase in global shrimp demand, 
Ecuadorian shrimp farms must further enhance their competitiveness. 
A key strategy involves the adoption of non-invasive measurement 
methods in both production and breeding programs. These methods 
have been shown to reduce costs, enhance measurement efficiency, and 
improve final product quality (Ana et al., 2016).

The PMG-BIOGEMAR©genetic breeding program, developed by 
the University of Las Palmas de Gran Canaria (Spain), has been im-
plemented by the Almar Group, a major shrimp producer based in 
Ecuador (Shin et al., 2020). Genetic selection is carried out using 
the Best Linear Unbiased Prediction (BLUP) methodology, in which 
thousands of shrimp are assessed for growth and morphological traits. 
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Previous studies have established the genetic parameters of these 
morphological traits and identified the most relevant ones for selection 
in this population (Shin et al., 2023; Martínez Soler et al., 2024).

However, the trait measurements in these studies were obtained 
manually, a process that is time-consuming and prone to errors that are 
difficult to correct. Automating these measurements can significantly 
reduce operational costs and allow the evaluation of a much larger 
number of individuals, thereby strengthening the effectiveness of the 
genetic selection process. This study proposes a novel deep learning 
solution to automate these measurements, enabling precise and robust 
phenotyping.

This work introduces a system that uses deep learning to produce 
precise and robust shrimp measurements. We adapt the successful line 
of research pioneered by Wei et al. (2016) for human pose inference. 
Our system is designed to predict the coordinates of 23 keypoints in 
shrimp images. These keypoints collectively construct a virtual skele-
tal structure that encapsulates the morphological characteristics of 
interest. By mapping these points, the system effectively represents 
the anatomical framework of the shrimp, allowing the extraction and 
analysis of relevant morphological variables.

Our approach estimates the specific keypoints that define the start 
and end of each required measurement. For example, measuring the 
head length first requires estimating the animal’s virtual skeleton; 
the Two-Dimensional (2D) distance is then calculated between the 
keypoints at the tip and back of the head. Once the 2D keypoints have 
been detected and correctly estimated, we perform a regression that 
transforms that 2D measurement to the required Three-Dimensional 
(3D) measurement. Our system is able to perform both the required 
lateral and dorsal measurements.

Our method’s goal is to enhance the manual measurement process 
performed by human operators. The manual process of measuring and 
labelling shrimp is prone to human error. In this paper, we focus on 
using artificial intelligence (AI) as a ‘‘second check’’ to validate human 
annotations and raise an alarm if discrepancies are found, although 
our results show the AI already commits fewer errors than human 
operators. Furthermore, our approach enhances operational efficiency 
by drastically reducing the annotation time per specimen from ap-
proximately 9 min (manual measurement of all traits) to just 32 ms 
(automated inference per image), directly translating into significant 
labour cost savings and increased throughput for breeding facilities.

Our approach not only measures keypoints robustly but also handles 
human error in two additional ways: by detecting the shrimp’s point of 
view (lateral or dorsal) and by checking its rostrum integrity. The rostrum
is the beak-shaped structure on the shrimp’s head, which is essential 
for measuring traits like cephalothorax length (Martínez Soler et al., 
2024). As this structure is often broken during the shrimp’s life, rostrum 
integrity simply refers to the assessment of whether this ‘horn’ is intact 
(good) or broken, a critical factor that determines if certain keypoints 
can be measured.

First, an AI detection system predicts the shrimp’s point of view 
(lateral or dorsal). This works as a secondary system that detects when 
the human might have produced an error and generates an alert. 
Second, a similar AI detector validates the human’s assessment of the 
rostrum’s integrity. If our AI detector predicts that the human could 
have committed an error (e.g., attempting to measure a broken rostrum 
as if it were intact (good)), we raise an alarm. In summary, the main 
contributions of our work are the following:

• An automatic and robust system that can measure shrimp.
We introduce a system for robust 3D shrimp measurement,
achieved by modelling the animal as a 23-keypoint skeleton and 
using deep learning to extract multi-point-of-view morphological 
data from over 12,000 annotated images.

• Two AI detection systems capable of mitigating human error.
We deploy two complementary AI modules that validate the ani-
mal’s point of view (lateral/dorsal) and rostrum integrity, alerting 
the operator to potential data entry errors.
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• A regression estimator to increase the precision of the 3D 
measurements. We use a regression estimator to convert 2D 
pixel-based keypoints into real-world 3D measurements, which 
significantly reduces the final system error.

2. Related work

We will now detail the context in which our work resides. We 
will first detail other works performed in the field of aquaculture 
engineering that address the extraction of morphological/biometrical 
information from animals in a wide array of contexts. Secondly, we 
will describe the work performed in the field of articulated 3D pose 
estimation, which is the line of work from which our 3D shrimp pose 
estimation draws inspiration.

To the best of our knowledge, no one has performed 3D shrimp 
pose estimation before, the closest work was that of Chirdchoo et al. 
(2024) that only performed visual analysis and reports errors of 2.1 
centimetres (cm) of Mean Absolute Error (MAE) for the length of the 
shrimp. In our work we are capable of estimating not just the length 
of the shrimp but also a complete set of morphological measurements 
from our detected shrimp skeleton. When comparing only the length 
estimation we provide a much more precise measurement yielding 
0.54 cm of MAE, which improves the results by nearly an order of 
magnitude. This clearly shows that a more in-depth assessment of 
morphological traits, like the one we propose in this paper, greatly 
improves overall quality.

2.1. Computer vision in morphological analysis

The morphological measurement of aquatic animals is a critical 
aspect of fisheries management, species monitoring, and aquaculture. 
Although advanced artificial intelligence techniques and automated 
systems have been widely applied to fish species, similar approaches for 
shrimp remain under-explored. The challenge of automated morpholog-
ical analysis is twofold: first, the extraction of variables in pixel space, 
and second, the conversion of those pixels into real-world physical 
measurements (e.g., centimetres).

For the pixel extraction task, methods range from classical Com-
puter Vision to advanced deep learning, including semantic segmenta-
tion, detection, and pose estimation. For the conversion task, methods 
vary from using no conversion to simple scaling factors or regression 
models. Our work argues that for complex genetic selection, a pose 
estimation framework combined with a regression-based converter is 
the superior approach.

Existing approaches to pixel extraction vary in complexity. Early 
work on shrimp relied on traditional Computer Vision
(Harbitz, 2007; Hadiyanto and Widodo, 2022), while recent studies use 
Convolutional Neural Networks (CNNs) (Chao Zhou and Yang, 2021). 
However, these modern systems, for both shrimp and fish, often rely on 
segmentation methods (e.g.,Mask Region-based Convolutional Neural 
Network (Mask R-CNN) Chirdchoo et al., 2024; Zhou et al., 2023; 
García-Santamaría et al., 2022; Garcia et al., 2019; Huang et al., 2020, 
You Only Look Once (YOLO) Climent-Perez et al., 2024; Dong et al., 
2023; Tonachella et al., 2022).

While effective for simple external metrics like total length (often 
the only variable measured), these methods are fundamentally insuffi-
cient for genetic selection. Our objective is a complete morphological 
analysis of 23 distinct variables, many of which depend on inter-
nal anatomical keypoints (like segment junctions) that segmentation 
masks cannot locate. For instance, identifying the precise positions 
from where to measure abdominal segments requires detecting subtle 
anatomical landmarks rather than just the animal’s outline; a segmen-
tation mask might accurately capture the shrimp’s silhouette but fail to 
pinpoint these internal articulation points required for specific genetic 
traits (e.g., segment lengths), leading to measurement inaccuracies due 
to boundary misalignment.
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Table 1
Comparative analysis of Imashrimp with state-of-the-art morphological analysis systems. Abbreviations: N.◦ vars.: Number of measured variables; TL: Total Length; 
MAPE: Mean Absolute Percentage Error; SLCNet: Shrimp Larvae Counting Network; YOLACT: You Only Look At CoefficienTs.
 Research Species Objective Method Dataset N.◦ vars. TL MAE (cm) TL MAPE (%) 
 Chirdchoo 
et al. 
(2024)

Pacific white 
shrimp

Estimating body weight by 
extracting five key 
morphological features: 
area, perimeter, width, 
length, and body posture

Detectron2 
(Wu et al., 
2019a) + 
Classical 
Computer 
Vision

Train: 3946; 
Test: 1036

5 2.10 (Known 
scaling 
factor)

14.57 
(Known 
scaling 
factor)

 

 Harbitz 
(2007)

Pandalus 
borealis

Automatically estimate the 
length of the shrimp shell

Classical 
Computer 
Vision

Not given 1 Non-
comparable 
metrics

Non-
comparable 
metrics

 

 Hadiyanto 
and 
Widodo 
(2022)

Penaeus 
vannamei

Estimation of body weight 
using morphometric 
features extracted from 
images

Classical 
Computer 
Vision

Train: 20; 
Test: 6

1 Non-
comparable 
metrics

Non-
comparable 
metrics

 

 Chao Zhou 
and Yang 
(2021)

Cherax 
quadricarina-
tus (Shrimp 
larvae)

Estimation of body length 
measurement

SLCNet (Liu 
et al., 2022)

Train: 294; 
Test: 126

1 No 
conversion to 
physical units

No 
conversion to 
physical units

 

 Zhou 
et al. 
(2023)

Shrimp, 
species not 
given

Automatically estimate the 
size (length and width) of 
shrimps to monitor their 
growth rate.

Mask RCNN 
(He et al., 
2017) + 
Classical 
Computer 
Vision

Train: 300; 
Test: 150

2 No 
conversion to 
physical units

No 
conversion to 
physical units

 

 Climent-
Perez 
et al. 
(2024)

12 species + 
1 due to 
sexual 
dimorphism

Estimating the length of 
fish

YOLACT++ 
(Bolya et al., 
2019)

Train: 1108; 
Test: 152

1 1.76 (Visual 
metrology 
based on 
homography)

11.44 (Visual 
metrology 
based on 
homography)

 

 García-
Santamaría 
et al. 
(2022)

Lampuga 
(Dolphinfish),
Coryphaena 
hippurus

Estimate the average fork 
length of fish in each 
landing box

Mask R-CNN 
(He et al., 
2017)

Train: 246; 
Test: 30

1 Not given 4.00-6.90 
(Length-
weight scale 
factor)

 

 Garcia 
et al. 
(2019)

7 species of 
pelagic fish

Measurements of the 
length of individual fish

Classical 
Computer 
Vision + 
Mask R-CNN 
(He et al., 
2017)

Train: 1625; 
Test: 80

1 No 
conversion to 
physical units

No 
conversion to 
physical units

 

 Huang 
et al. 
(2020)

Fish (species 
not specified)

Measurement of body 
dimensions (length and 
width) of fish in an 
unrestricted environment

Mask R-CNN 
(He et al., 
2017) + 
Classical 
Computer 
Vision

Not given 2 0.55 (Scale 
factor with 
chessboard 
pattern)

4.00 (Scale 
factor with 
chessboard 
pattern)

 

 Voskakis 
et al. 
(2021)

Gilthead 
seabream and
European 
seabass

The distance between the 
mouth and tail, mouth and 
eye, and eye and tail is 
estimated

Open Pose 
(Cao et al., 
2021)

Train: 250; 
Test: 20

3 Not given Seabream: 
3.15; 
Seabass: 7.40 
(Scale factor 
with 
chessboard 
pattern)

 

 Dong 
et al. 
(2023)

Fish (species 
not specified)

Detection of 7 biological 
keypoints on the fish’s 
body

YOLO 
(Redmon 
et al., 2016) 
+ Lite-HRNet 
(Yu et al., 
2021) (7 
keypoints)

Detection: 
3000; Pose 
Estimation: 
2000

Not given No 
conversion to 
physical units

No 
conversion to 
physical units

 

 Tonachella 
et al. 
(2022)

Gilthead 
seabream

Automatic estimation of 
body length and prediction 
of weight

YOLO 
(Redmon 
et al., 2016) 
+ ResNet-101 
(He et al., 
2016)

Detection: 
1400; Pose 
Estimation: 
12800

2 1.15 (Scale 
factor with 
chessboard 
pattern)

5.50 (Scale 
factor with 
chessboard 
pattern)

 

 Imashrimp 
(Ours)

Penaeus 
vannamei

Complete morphological 
analysis for genetic 
selection

Imashrimp 
framework

Train: 11122; 
Test: 1245

23, see Fig.  6 0.54 (Support 
Vector 
Machine)

3.76 (Support 
Vector 
Machine)
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This limitation led us to a pose estimation framework. While some 
fish studies have used pose estimation (e.g., OpenPose Cao et al., 2021, 
Lite-High-Resolution Network (HRNet) Dong et al., 2023 or Residual 
Network 101 (ResNet-101) Tonachella et al., 2022) to extract more 
variables (2 to 3), Imashrimp is the first to apply a state-of-the-art 
Vision Transformer (ViT) architecture (Xu et al., 2022) to shrimp.

This architectural choice aligns with recent trends in complex agri-
cultural and biological visual analysis, where transformer-based (ViT) 
models are increasingly favoured over traditional Convolutional Neural 
Networks (CNNs) for their superior ability to capture global rela-
tionships, despite potential trade-offs in processing speed (Çakmak, 
2025). Our novel, reusable framework (integrating discrimination, pose 
estimation, and conversion) is purpose-built for the genetic selection 
workflow. It leverages a large, high-quality dataset (12,367 annotated 
images) to achieve high-precision results across all 23 keypoints, not 
just total length.

In Table  1, we show an in-depth comparison between Imashrimp 
and other approaches that perform morphological analysis on other 
fish or crustacean species. This table highlights the methodology, the 
number of variables measured (N.◦ vars.), and the reported error for 
Total Length (TL), the most common benchmark. As shown in Table 
1, our framework not only measures a far more comprehensive set of 
variables (23) but also achieves a significantly lower error (3.76% Mean 
Absolute Percentage Error (MAPE)) than the most directly comparable 
study (Chirdchoo et al., 2024) on the same species (14.57% MAPE).

Regarding pixel-to-centimetre conversion modules, there are sev-
eral methodologies. Some studies, such as (Chao Zhou and Yang, 
2021), Zhou et al. (2023), Garcia et al. (2019) and Dong et al. (2023), 
do not perform physical measurements, instead prioritizing the detec-
tion of precise morphological variables. Other works, such as (Huang 
et al., 2020; Voskakis et al., 2021) and Tonachella et al. (2022), employ 
triangulation systems using a chessboard and binocular cameras for 
calibration.

In addition, some studies use a known real-world measurement to 
derive a scaling factor, as seen in Chirdchoo et al. (2024), García-
Santamaría et al. (2022) and Climent-Perez et al. (2024). Finally, 
regression models provide another approach for efficient pixel-to-
centimetre conversion. Our study opts for this methodology, given the 
substantial amount of real data collected for the 23 morphological 
variables, allowing for the development of a robust predictive model 
for this task.

2.2. Articulated 3D pose estimation

Obtaining the pose of a human or an animal has been extensively 
researched for years and great advances have been made. The pose 
of humans or animals is in essence an articulated skeleton, and the 
task lies in finding with precision the 3D locations of the joints of said 
skeletons.

Before deep learning, the most promising results obtained in 2D 
human pose estimation can be seen in Andriluka et al. (2014). Ob-
taining precise 3D measurements remained a challenge at that time. 
With the appearance of Convolutional Pose Machines (CPM) by Wei 
et al. (2016) it was showed that using deep learning could yield very 
robust 3D estimations to the articulated pose estimation problem. This 
advancement was made possible by creating datasets that addressed the 
need for larger amounts of training data, some of these datasets were 
Human 3.6, by Ionescu et al. (2014) and HumanEva, by Sigal et al. 
(2010).

From the original CPM research paper, many others continued to 
improve the 3D estimation. For example, in the work by Tome et al. 
(2017) it is proposed to optimize the 2D and 3D positions together 
to improve both tasks through the inherent sharing of information 
within the neural network architecture. In the work by Moreno-Noguer 
(2016) the 3D pose is obtained by modelling the problem as a regres-
sion between two Euclidean distance matrices. In subsequent years, 
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the paradigm changed from using convolutional neurons to using vi-
sual transformers by Dosovitskiy et al. (2021). This paradigm change 
was then incorporated into many human pose estimation approaches 
like (Dosovitskiy et al., 2021) and Xu et al. (2022).

Concerning the application of said approaches to animal pose es-
timation, there has been less work overall, but the said techniques 
have been demonstrated to be robust enough to handle dog poses, 
like (Rueegg et al., 2022), or even zebra, tiger, elephant, and horse, as 
seen in Yao et al. (2022) amongst others. Again, this has been possible 
due to the creation of datasets like the ones by Xu et al. (2023) and 
by Marshall et al. (2021). The majority of the articulated 3D animal 
pose estimation has been focused on mammals, which makes our work 
quite unique as it shows that such techniques can be used on a wider 
array of animal species, and particularly those of great economical 
interest.

3. Background

In this section, we will describe the scenario in which our system 
works to facilitate the understanding of our paper. Firstly, we will 
introduce the way in which genetic selection is performed, secondly, we 
will show the image capture setup (in Fig.  1) we have used for our data 
collection and that is also used for testing, and finally, we will describe 
the keypoint virtual skeleton definition that we propose and that comes 
directly from the initial and final position from which measurements 
are performed by the expert geneticists. Shrimp selective breeding. 
Genetic selection breeding programs for the species allow breeders to 
be selected according to their Estimated Breeding Values (EBVs) for a 
desired trait to obtain the next generation. For the current population, 
weight and morphological traits are among the most important traits 
to be selected. To perform such selection, a statistical analysis of 
morphological traits using Best Linear Unbiased Prediction (BLUP) is 
used. Some of the more costly morphological traits to obtain are the 
precise measurements of each part of the shrimp. Our system uses 23 
morphological measurements from both the dorsal and lateral point of 
views of the animal.

A detailed description diagram of the morphological measurements, 
and how they are related to the shrimp virtual skeleton, can be found in 
Fig.  6. More qualitative examples of the morphological measurements 
as they are performed in real cases can be seen in Fig.  2 for the lateral 
case and in Fig.  3 for the dorsal case. Fig.  2 provides a complete visual 
breakdown for the lateral point of view, illustrating the comparison 
between the ground truth and the model’s prediction (top row), the 
pixel-level error and activation heatmaps (middle row), and a diagram 
of the derived morphological measurements (bottom row).

Shrimp virtual skeleton definition. As explained before, each of 
the measurements done on the shrimp for selective breeding consists 
of a starting and final point of measurement. Many of those points 
are used several times. For example, when measuring the head of the 
shrimp we measure from point 𝑥1 till point 𝑥2, and afterwards when 
measuring the length of the first segment of the body of the shrimp 
we measure from point 𝑥2 to point 𝑥3. By taking each of the points 
required for measurement and their topology we have our proposed 
virtual skeleton as seen in Fig.  2 (top row on the left).

In our work we estimate two virtual skeletons depending on the 
point of view, the lateral skeleton, Fig.  2, and the dorsal skeleton, Fig. 
3. Given the skeletons that we have defined, we can perform keypoint 
pose estimation, similar to the one used in humans in Wei et al. (2016) 
or (Xu et al., 2022), to learn to predict the points we require for our 
measurements. We learn two separate neural networks that estimate 
the lateral and the dorsal skeleton separately.
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Fig. 1. Image acquisition setup and methodology. All shrimp were captured in four configurations, 0◦, 90◦, 180◦ and 270◦. First row: Image acquisition of the 
shrimp’s right lateral point of view from all degrees. Second row: Image acquisition of the shrimp’s left lateral point of view at all degrees. Third row: Capture 
of images of the shrimp’s dorsal point of view at all degrees. This consists of a total of 12 images captured for each shrimp specimen, with a total number of 
1223 shrimp specimens in the annotated dataset.

Fig. 2. Description of the keypoint virtual skeleton used by our shrimp pose estimator and the measurements performed on the animal used for genetic 
improvement. Top row: Ground truth virtual skeleton (left) and the prediction by Imashrimp (right), both with measures in centimetres. Middle row: Pixel 
errors (left) and heatmaps activations (right). Bottom row: Derived measurements diagram. A full description of all measurements can be found in Shin et al. 
(2023) and in Martínez Soler et al. (2024).

Engineering Applications of Artiϧcial Intelligence 165 (2026) 113493 
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Fig. 3. Description of the dorsal keypoint virtual skeleton used by our 
shrimp pose estimator. First row: Ground truth virtual skeleton, with 
measures in centimetres. Second row: Prediction of Imashrimp with measures 
in centimetres. Third row: Pixel errors. Fourth row: Heatmaps activations.

4. Method

We have named our approach Imashrimp, and it is composed of 
three different elements: firstly, two modules based on artificial intel-
ligence that perform the discriminator tasks (point of view and rostrum
integrity) to avoid human error during data labelling, secondly, the 
shrimp pose estimation system that performs the keypoint estimation 
from which measurements can be performed, and lastly, a regression 
module that learns how to convert from pixel coordinates into real 
world positions from which the 3D measurements can be obtained.

The function of the discriminator modules for the discrimination of 
images will be explained according to two main factors, the shrimp’s 
point of view and the shrimp integrity of the rostrum. Afterwards, the 
operation of the shrimp pose estimation module will be explained, 
which will be responsible for detecting 23 keypoints for each of the 
point of views (lateral and dorsal), if the rostrum is broken it will 
only detect 22. Finally, the morphological regression module will be 
explained, which is responsible for converting the morphological vari-
ables resulting from the detection of keypoints (pose estimation system) 
from pixels to centimetres.

The proposed method integrates these three modules (discrimi-
nation, pose estimation, and regression) into a complete system. To 
illustrate this, the system’s end-to-end workflow is presented in Fig.  4. 
This flowchart details the logical process from image capture, through 
the logical decisions of the discrimination modules, to the final data 
generation, clarifying the workflow for research and industrial use. 
Complementing this workflow, Fig.  5 details the technical architec-
ture of the core pose estimation module. The specific morphological 
variables derived from this process are then shown in Fig.  6.
6 
4.1. Discrimination systems

As described above, our proposed approach incorporates two inde-
pendent neural networks that are used to detect the conditions of the 
shrimp alongside human annotation to greatly reduce human error. 
When humans create the metadata associated with the images, they 
have to introduce if the image was taken from a lateral or dorsal 
point of view and if the shrimp has a complete rostrum. Based on this 
information, our system selects the specific pose estimation model that 
is required, whether the shrimp requires lateral measures or dorsal 
measures to be detected, or reduce the number of keypoints from 23 
to 22 if the rostrum is not present.

To maximize the robustness of our system, we show that the best 
approach is to use both the human annotation and the automatically 
detected artificial intelligence (AI) results. This works as a sort of two-
factor authentication, if human and AI agree, the data is introduced 
into the database, if they disagree an alarm is raised for the data to be 
checked and corrected. With this scheme, we manage to reduce human 
error from 0.64% to 0% for the annotation of the point of view of the 
image (lateral/dorsal), and we reduce human error in rostrum presence 
from 10.44% to 1.04% with our discriminator systems. Results can be 
seen in Table  2.

Both our rostrum integrity and point-of-view classifiers work in 
the same way to help the human technician. To classify between the 
lateral/dorsal point of view and the presence of rostrum, we use a 
Residual Network 50 (ResNet-50) architecture, by He et al. (2016), for 
binary classification. The use of Convolutional Neural Networks (CNNs) 
to classify images as a proxy for complex physical measurements is 
an analogous task to recent work in other fields, such as medical 
diagnostics, where numerous Deep Learning architectures have been 
benchmarked for classifying intraoral photographs to predict cephalo-
metric measurements (Kartbak et al., 2025). While our binary task did 
not require such an extensive benchmark, this prior work validates our 
general approach.

We pass the complete image to train the classifier to detect the 
desired prediction, as seen in Fig.  1. The human makes an assessment 
𝛹ℎ
𝑝𝑜𝑣 for the point of view of the shrimp (lateral or dorsal) and an 
assessment for the rostrum integrity 𝛹ℎ

𝑟𝑖. We define these outputs as 
binary, e.g., 𝛹𝑝𝑜𝑣 ∈ {0, 1}, where 0=Lateral and 1=Dorsal and 𝛹𝑟𝑖 ∈
{0, 1}, where 0=Broken and 1=Good. In parallel, our discriminator ar-
chitecture makes a parallel assessment 𝛹𝐴𝐼

𝑝𝑜𝑣 and 𝛹𝐴𝐼
𝑟𝑖 . The final decision 

to raise an alert, 𝐴 ∈ {0, 1} (where 1=Alert), is made as follows:
𝐴𝑝𝑜𝑣 = 𝛹𝐴𝐼

𝑝𝑜𝑣 ⊕𝛹ℎ
𝑝𝑜𝑣 (1)

𝐴𝑟𝑖 = 𝛹𝐴𝐼
𝑟𝑖 ⊕𝛹ℎ

𝑟𝑖 (2)

Using the exclusive OR (XOR) operator, denoted by ⊕, this formu-
lation ensures that an alert (𝐴 = 1) is raised only if the human and AI 
assessments disagree (i.e., one is 0 and the other is 1). This does not 
fix the very few cases in which both commit a mistake, this in any case 
is a lesser problem as it does not introduce errors that in the previous 
approach were not present already.

We believe that our approach provides the best of both worlds, 
human errors occur in repetitive tasks from humans losing focus, 
whereas AI errors occur due to different factors. Due to our hybrid 
two-factor authentication, the AI can fix the most human errors due to 
loosing concentration and humans can avoid errors that the AI might 
introduce.

4.2. Shrimp pose estimation

We have modelled the task of measuring the shrimp morphology 
as that of a shrimp pose estimation task, where each of the joints 
of the skeleton are the keypoints that will be used to estimate the 
desired measurements. We draw from the rich state-of-the-art advances 
in human pose estimation, in which the best performing approaches 
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Fig. 4. The end-to-end operational workflow of the Imashrimp system. Abbreviations: ViT-Pose: ViT-based pose estimation networks; KP: Keypoints.

Fig. 5. Technical overview of the proposed method for shrimp pose estimation and size regression. The diagram illustrates the flow from input images 
through the discriminators to the parallel ViT-based pose estimation networks (ViT-Pose). The two architectures shown (Dorsal and Lateral) represent four distinct 
models (dorsal-22, dorsal-23, lateral-22, and lateral-23) by adapting the skeleton from 23 keypoints (rostrum good) to 22 (rostrum broken), indicated by the 
green dotted line in the final estimation.
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use a neural network to learn to predict a series of heatmaps from 
which the keypoint locations are derived. We follow the work of Xu 
et al. (2022) for our neural network by creating an encoder/decoder 
architecture. Encoding is done using the Vision Transformer (ViT) 
architecture by Dosovitskiy et al. (2021). The decoder consists of a 
bilinear layer followed by a 𝑅𝑒𝐿𝑈 activation function and a final pose 
predictor as described in Xiao et al. (2018). In our work we employ 
Red-Green-Blue-Depth (RGB-D) images to further enhance the precision 
of our keypoint estimations given the 3D information that the depth 
channel provides.

Given an input RGB-D image of size 𝑋 ∈ 𝑅𝐻𝑥𝑊 𝑥4, where 𝐻 is of 
192 pixels of height and 𝑊  is 256 pixels of width, we perform an 
initial encoding in a patch embedding space 𝐹0 of smaller resolution. 
Our embedding reduces the resolution by a factor of 𝑑 = 16 and has 
dimensions of 𝐶 = 1280, which creates a patch embedding of size 𝐹0 ∈
𝑅

𝐻
𝑑 𝑥𝑊

𝑑 𝑥𝐶 which in our work leaves us with 𝐹0 ∈ 𝑅12𝑥16𝑥1280. From this 
initial encoding 𝐹0 we apply several ViT layers which consist of a multi-
head self-attention layer 𝛩𝑖 and then a multi-layer perceptron 𝑀𝐿𝑃𝑖. 
Layer normalization is applied before every 𝐹𝑖 block, we represent it 
by the ̂∗ symbol.

We use 16 ViT layers for our encoder. The dimensionality of the em-
bedding 𝐶 remains unchanged throughout the encoding. The final form 
of the encoding 𝐹𝑖 at each intermediate step 𝑖 is defined by the standard 
Transformer block architecture, which consists of a Multi-Head Self-
Attention (MSA) layer (𝛩) followed by a Multi-Layer Perceptron (MLP), 
both with residual connections:
𝐹 ′
𝑖 = 𝐹𝑖−1 + 𝛩𝑖(𝐹𝑖−1) (3)

𝐹𝑖 = 𝐹 ′
𝑖 +𝑀𝐿𝑃𝑖(𝐹 ′

𝑖 ) (4)

Our decoder architecture is a simple combination of a bilinear inter-
polation and a ReLU activation function, with the final pose predictor. 
Given the final encoding output of our 16 ViT layers 𝐹16 ∈ 𝑅

𝐻
16 𝑥

𝑊
16 𝑥𝐶 , 

the decoder creates a set of heatmaps per each keypoint 𝑘 of the virtual 
skeleton and upscales by a factor of 4. The number of keypoints in 
our configuration is of 𝑁𝑘 = 23 for the general case and of 𝑁𝑘 = 22
for animals without rostrum. This yields the tensor 𝐹ℎ𝑒𝑎𝑡 ∈ 𝑅

𝐻
4 𝑥𝑊

4 𝑥𝑁𝑘 . 
Given 𝐹ℎ𝑒𝑎𝑡, the predictor optimizes an 𝐿2 loss from the training data to 
learn the prediction of the final position of each keypoint 𝑘. We show 
in Fig.  5 a visual diagram of the shrimp pose estimation network.

In order to train such a neural network, up to 3.6 million images can 
be required, as seen in Ionescu et al. (2014). To avoid such high costs in 
annotation (our dataset is 12367 images), we leverage weights trained 
on different tasks to bootstrap our training through transfer learning. 
Our encoder has been pre-trained in other tasks/datasets to have better 
encodings that will allow the pose estimation to be successful. The 
datasets on which our network has been pre-trained are the Microsoft 
Common Objects in Context (MS-COCO) dataset, by Lin et al. (2015), 
the artificial intelligence (AI) challenger dataset, by Wu et al. (2019b) 
and the Max Planck Institut Informatik (MPII) Human pose dataset, 
by Andriluka et al. (2014).

4.3. Shrimp morphological regression

Once the keypoints have been found in the 2D image space, the 
next step is to derive the real 3D distances. In order to do so, the 
simple way to approach it is by calibrating how many centimetres 
does one pixel equate to, this was the method used by the IMAFISH 
method, by Navarro et al. (2016). We consider this approach our 
baseline method. However, as described by Garcia et al. (2019) it yields 
much more precise measurements to construct a regression model from 
known instances. Following their discoveries, we construct a regression 
model per measurement.

In the general case, our pose estimator returns a set of 23 keypoints 
𝑋  and from those 23 points a set of 22 measurements 𝐷 . We refer 
𝑖 𝑎
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again to Fig.  6 for details of each keypoint and their related measure-
ments. The desired measurements must be in 3D, which we define 
as 𝐷3𝐷

𝑎 , but the ones we obtain from our shrimp keypoint detection 
network are in 2D, defined on the image plane, which we define as 
𝐷2𝐷

𝑎 .
To obtain the 3D measurements from the 2D, we propose to learn 

a regression model. If one seeks to find a mapping between our 2D 
measurements 𝐷2𝐷

𝑎  and the real 3D measurements 𝐷3𝐷
𝑎  it can be posed 

as a problem of learning the coefficients of the function 𝐷3𝐷
𝑎 = 𝐷2𝐷

𝑎 ∗
𝛼+𝛽. Due to the inaccuracies of our data, which come from the human 
measurements, pixel quantization effects and the camera parameters, 
an exact solution of 𝛼, 𝛽 does not exist. Due to this reason regression 
tries to find the closest hyperplane, as close to flat as possible, that 
models the relation between our 2D and 3D measurements. It does 
so by performing the optimization described by Vapnik et al. (1996). 
Support Vector Machine (SVM) regression is well-suited for this task 
because, due to the noise in the measurements (e.g., keypoint jitter), 
the mapping from 2D pixel distances to 3D measurements is no longer 
perfectly linear. The epsilon-insensitive loss function of SVM allows the 
model to ignore small errors within a defined margin, providing robust-
ness against this noise and ensuring better generalization than standard 
least-squares methods. We use this regression model as it proved to be 
the best performing approximation. We obtain an individual regression 
per measurement, the regression function is learned from the training 
samples of 𝐷3𝐷

𝑎 , 𝐷2𝐷
𝑎  pairs. If we compare our regression approach with 

the baseline of just performing a simple calibration, we can see in Table 
6 that there is a substantial advantage to perform regression.

5. Experimental setup

This section will present the different experiments that were carried 
out to validate the proposed approach. First, the dataset used in the 
experiments is described. Then, each module, i.e., the Point of View 
Discriminator, the Rostrum Discriminator, the Shrimp Pose Estimation 
and the Shrimp Size Regressor will be validated separately, each with 
a set of experiments aimed at demonstrating the performance of the 
different modules. Finally, an overall validation will be conducted for 
the whole proposed system.

5.1. Dataset

The images used in this article correspond to the SABE (Servicio 
de Análisis para Acuicultura 𝑦 Biotecnología de Alta Especialización) 
laboratory and were captured during an eight month period (August 
2023 to April 2024). The images were captured using an Intel Realsense 
D435 RGB-D camera. The camera was fixed with a tripod in a zenithal 
position at 30 centimetres of the plane in a controlled laboratory 
environment featuring a black background and similar uniform lighting 
conditions.

The dataset is comprised of 12 images per animal specimen, with 
each consisting of an Red-Green-Blue (RGB) image and its correspond-
ing depth map. The same animal is photographed from three different 
point of views, lateral right, lateral left, and dorsal point of view at 
four different angles; see Fig.  1. To clarify how these point of views 
were handled, the ’lateral right’ and ’lateral left’ images were not used 
to train separate networks. Instead, they were combined into a single 
‘lateral’ dataset to train both the ’lateral-22’ and ’lateral-23’ models, 
leveraging the anatomical symmetry of the keypoint skeleton from 
either point of view.

After the imaging procedure, 2856 images containing rotten shrimp 
and 2621 images that were blurred were manually discarded. The 
final resulting dataset contains 12367 shrimp images, with a total 
of 1223 individuals photographed. Regarding rostrum integrity, the 
dataset exhibits a significant class imbalance, comprising 10,764 im-
ages with intact (’good’) rostrums and 1603 with broken rostrums (see 
Table  A.11). To mitigate the classification bias towards the majority 
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Fig. 6. Description of the keypoint virtual skeletons (lateral and dorsal) and the extracted morphological measurements. First row: Shrimp lateral 
keypoint virtual skeleton, keypoints 1 to 9 can be identified (red points), representing morphological variables of length. Keypoints 10 to 23 can be identified 
(green points), representing morphological variables of heights. Second row: Shrimp dorsal keypoint virtual skeleton, keypoints 1 to 9 can be identified (red 
points), representing morphological variables of length. Keypoints 10 to 23 can be identified (blue points), representing morphological variables of widths.
class inherent in such imbalances, we implemented the ‘‘two-factor’’ 
(Human-AI) authentication system described in Section 4.1. This col-
laborative approach serves as a critical quality control layer, correcting 
potential AI misclassifications driven by the data disparity. For testing 
purposes 10% of all shrimp specimens, and all their images, were 
separated to ensure a robust validation, all shrimp specimens used 
for testing were not seen during training. We include a complete 
description on the dataset creation and details in Appendix  A.

For the discriminator modules, ground truth data was created to 
ensure a robust verification mechanism. During image capture, re-
searchers concurrently recorded information about the point of view 
(Lateral or Dorsal) and the rostrum’s integrity (Good or Broken). This 
dataset includes annotations from 12367 images, comprising both 
human observations and those designated as ground truth.

The ground truth data was created by having an expert geneticist 
check the work of the technicians that performed the data annotation 
to record the cases of human error. The dual-phase documentation 
approach aims to enhance data reliability by comparing real-time ob-
servations, as done by technicians on-site, with curated post-acquisition 
assessments.

All 12367 images in the dataset were annotated with the 23 key-
points that form the virtual skeleton for the ’Shrimp Pose Estimation’ 
module. Then, using the estimated skeleton keypoints, we extract the 
morphological variables of length, height, and width. Examples of 
ground truth labels and morphological variables can be found in Fig. 
6. The annotations were created using a generic annotation tool, CVAT 
(Computer Vision Annotation Tool), and subsequently exported in the 
MS-COCO keypoint format Lin et al. (2015).

For the Shrimp Size Regressor, during image capture, information 
was also collected about the actual morphological variables of the 
animal, identical to those shown in Fig.  6. This information was used 
in the regression model.

5.2. Proposed discriminators experiments

These study employs a ResNet-50 (He et al., 2016) inspired neural 
network to improve the assessment of shrimp morphology through 
binary discriminators of two different key features: point of view 
and rostrum integrity. The model’s performance will be evaluated by 
9 
measuring error rates (Error %) on a test set, comparing errors from: 
(1) human researchers, (2) the discriminator, and (3) their combined 
system.

To quantify the improvement offered by the hybrid system, the 
trained model will be compared the case in which only human assess-
ment and the case in which only artificial intelligence (AI) assessment 
is provided. The idea is to demonstrate improvements in accuracy and 
synergy between human expertise and machine learning.

5.3. Proposed pose estimation experiments

The experiments conducted for our Pose Estimation modules aim to 
evaluate the performance in the test image subset and demonstrate its 
utility for the proposed task. The test subset has been made by choosing 
shrimp specimens randomly from the whole image set and making all 
images of that specimen to be part of the test set. By doing this we 
assure that all test individuals have never been seen during training.

The input images are first processed through the dual discriminator 
system, which assesses the point of view and rostrum integrity. Based 
on the initial classification, the images are routed to one of four specific 
estimation neural networks: 1 (Lateral point of view + 23 keypoints),
2 (Dorsal point of view + 23 keypoints), 3 (Lateral point of view + 22 
keypoints), 4 (Dorsal point of view + 22 keypoints).

The four pose estimation neural networks are trained indepen-
dently using type-specific images with the keypoint skeleton annota-
tions adapted accordingly. The pose estimation networks will be tested 
individually, to asses the precision of the 2D estimations, and altogether 
to asses the precision of the final 3D measurements after the whole 
process is performed.

We will use commonly used metrics such as Euclidean Pixel Er-
ror (EPE) (Rong and Gang, 2024), Root Mean Square Error (RMSE), 
Mean Absolute Percentage Error (MAPE) per identified keypoint of the 
overall system, i.e. the four modules working as a complete system. 
For individual modules, we evaluate performance using: (1) Mean 
Average Precision (mAP) as in Xu et al. (2022), and (2) Percentage of 
Correct keypoints (PCK) (Andriluka et al., 2014), which applies a pixel 
threshold to determine correct keypoint detection.
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5.4. Proposed size regression experiments

The Support Vector Machine (SVM) regression model was selected 
to accurately convert the 23 shrimp morphological variables, as illus-
trated in Fig.  6, from pixels to centimetres. To achieve an efficient 
system for converting pixel measurements to centimetre measurements, 
two approaches are compared. First, a non-regression method is im-
plemented using a scale factor derived from ruler images, calculated 
based on the pixel distance between the 0 cm and 1 cm marks. And 
secondly, the one we chose, an SVM regression-based method that uses 
real measurements of all morphological variables in both centimetres 
(from the image capture phase) and pixels (from annotated ground 
truth data) to learn the regression coefficients.

The objective is to identify the conversion approach that delivers 
the most accurate conversion from pixels to centimetres. Width and 
height measurements can only be achieved through an specific point 
of view as shown in Fig.  6. But length measurements can be acquired 
through both point of views. We will show a comparison of precision 
between using either dorsal or lateral measurements to obtain length 
measurements.

6. Results

This section presents results from both quantitative and qualitative 
perspectives for all experiments: the Discriminator modules, Pose Es-
timation module, and Shrimp Size Regressor module. To validate the 
entire system, we will use a test subset with 1245 images, approximately 
10% of the total annotated dataset with 12367 images.

6.1. Discriminator results

In this section we will describe the results we obtained when apply-
ing both of our artificial intelligence (AI) based discrimination modules 
to reduce human annotation error. Implementation details will also 
be described for all experiments. For all binary classification tasks in 
the discriminator modules, a standard confidence threshold of 0.5 was 
applied to the model’s output probabilities to determine the predicted 
class labels.

6.1.1. Point of view discriminator results
Our point of view discriminator was trained to classify shrimp 

images into lateral and dorsal point of views using a dataset of 12367
annotated images. The network was trained for five epochs with a 
learning rate of 0.002 and a batch size of 256.

Using the test subset, we evaluated error rate, correct and incorrect 
detections across three classifiers: (1) human experts, (2) artificial 
intelligence (AI), and (3) our proposed hybrid system. Comparative per-
formance results are presented in Table  2. Of the whole test image set 
human researchers made 8 errors (0.64%). The discriminator module 
produced 0 errors (0%).

Finally, testing the ‘‘Human-AI (Ours)’’ system on the 1245 images 
yielded a 100% accuracy rate (0.0% error), correctly classifying all 831 
lateral and 414 dorsal images. This result indicates that the AI module, 
in this controlled test set, effectively eliminates the 0.64% error rate 
introduced by human-only annotation.

6.1.2. Rostrum integrity discriminator results
The proposed rostrum discriminator was trained to classify shrimp 

images based on rostrum integrity (good or broken), using the same 
dataset as the previous discriminator. The network was trained for five 
epochs with a learning rate of 0.0005 and a batch size of 256.

Using the test subset, we evaluated the error rate, correctly classified 
and incorrect detections with three classifiers: (1) human experts, (2) 
artificial intelligence (AI), and (3) our proposed hybrid system. The 
comparative results are shown in Table  2. Of the whole test image 
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set human researchers made 130 errors (10.44%). The discriminator 
module produced 37 errors (2.97%).

Finally, testing the complete system on the 1245 images achieved a 
much improved error rate of (1.04%). In this case the hybrid approach 
that combines AI and human assessments is by far the best performing 
approach.

6.2. Pose estimation results

The pose estimation system includes four independent neural net-
work architectures that are used based on the animal’s point of view 
(lateral or dorsal) and the rostrum integrity (good or broken). The 
discriminators separate the 1245 test images into four groups, assigning 
each to an appropriate pose estimation module.

To validate our choice of a ViT-Pose architecture, we conducted a 
comparative analysis against two other state-of-the-art pose estimation 
baselines: YOLO-Pose (Jocher and Qiu, 2025) and High-Resolution 
Network (HRNet) (Yu et al., 2021). The performance of our four 
specialized Imashrimp modules, alongside the comparative results from 
the other baselines, is summarized in Table  3. The results show that 
our specialized, ViT-Pose-based system (Imashrimp) achieves the best 
general performance on the 1245 test images, with a mAP of 96.84% 
and a Percentage of Correct Keypoints at a threshold of 10 pixels 
(PCK@10px) of 91.67%, which justifies our architectural choice.

The 2D keypoint errors were estimated by comparing the pixel 
predictions from the test set against the annotated ground truth. A 
summary of this analysis is presented in Table  4, which aggregates the 
results by the two main virtual skeletons (Lateral and Dorsal), as they 
represent distinct anatomical structures. A more granular analysis is 
provided in Appendix  B, which stratifies these 2D errors across all four 
specialized sub-models and includes the ‘Score’ (heatmap confidence) 
metric.

We show in Fig.  7 the heatmaps generated by the pose estimation 
module. They have been increased by a factor of four to provide clear 
visibility, the original heatmaps can be seen in Fig.  3 and in Fig.  2.

It can be seen that the activation peaks are sharply concentrated 
over the specific anatomical joints of interest, demonstrating that the 
model is not relying on irrelevant background features. This high-
precision activation gives us confidence that the model is learning the 
correct underlying representation of the shrimp’s skeleton as intended.

6.3. Size regressor results

This section details the conversion of 2D keypoints into 3D real-
world measurements (cm). We first conduct an extensive benchmark to 
select the optimal regression model (SVM), and then we evaluate its fi-
nal performance against a baseline scale-factor method and alternative 
data views.

To determine the most robust regressor, we first conducted an ex-
tensive benchmark of 14 different regression models. The performance 
of these models, evaluated on their ability to convert 2D pixel measure-
ments to 3D real-world measurements (cm), is detailed in Table  5. To 
clarify, the ’Sig. (vs. SVM)’ column indicates the statistical significance 
of each method’s MAE when compared to the ’SVM (Baseline)’ method 
using a paired Wilcoxon signed-rank test.

While several models (e.g., K-Neighbors and Polynomial regression) 
yielded a Mean Absolute Error (MAE) comparable to the Support Vector 
Machine (SVM), the SVM was selected as the optimal model. This deci-
sion was based on its low MAE combined with a more constrained 95% 
Confidence Interval (CI), which indicates a higher level of prediction, 
consistency, and reliability.

Having justified the selection of SVM, we then performed a high-
level comparison between the optimized regression-based approach 
(SVM) and the baseline scale-factor (non-regression) method. This com-
parison is shown in Table  6.
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Table 2
Classification performance of human, artificial intelligence (AI), and hybrid approaches for point of view and rostrum integrity discrimination.
 Point of view discriminator Rostrum integrity discriminator
 Classifier Error (%) Correct Incorrect Classifier Error (%) Correct Incorrect 
 Human 0.64 1237 8 Human 10.44 1115 130  
 AI 0.00 1245 0 AI 2.97 1208 37  
 Human-AI (Ours) 0.00 1245 0 Human-AI (Ours) 1.04 1232 13  
Table 3
Performance of the pose estimation modules on the test dataset (testimages) depending on the classification of the discriminator modules for Imashrimp, Yolo 
and HRNet.
 mAP 50:95 (%) PCK@10px (%)
 Sub-Model N◦ images Imashrimp (Ours) Yolo HRNet Imashrimp (Ours) Yolo HRNet 
 dorsal-22 73 96.44 83.73 94.86 93.28 88.48 90.90  
 lateral-22 144 98.40 85.86 95.24 90.18 81.00 88.54  
 dorsal-23 341 93.11 71.50 89.89 90.86 80.24 85.43  
 lateral-23 687 99.40 88.97 95.97 92.38 80.32 82.96  
 General 1245 96.84 82.51 93.82 91.67 82.51 86.99  
Table 4
Comparative 2D error analysis between real and predicted keypoints for the Lateral and Dorsal point of view. Abbreviation: px: pixel.
 Point Lateral Point of View Dorsal Point of View
 EPE (px) RMSE (px) MAPE (%) EPE (px) RMSE (px) MAPE (%) 
 1 11.97 ± 36.29 27.02 0.92 12.54 ± 15.64 14.17 1.22  
 2 3.19 ± 1.78 2.58 0.30 3.98 ± 2.26 3.24 0.37  
 3 3.42 ± 2.07 2.83 0.32 3.91 ± 2.31 3.21 0.35  
 4 4.59 ± 3.45 4.06 0.42 4.46 ± 2.83 3.73 0.40  
 5 4.90 ± 3.27 4.17 0.46 5.20 ± 3.30 4.35 0.46  
 6 3.62 ± 2.18 2.99 0.35 3.78 ± 2.09 3.05 0.34  
 7 3.31 ± 1.94 2.71 0.31 3.65 ± 2.06 2.96 0.34  
 8 3.64 ± 2.15 2.99 0.36 3.62 ± 1.95 2.91 0.37  
 9 8.79 ± 5.14 7.20 0.71 9.78 ± 5.33 7.87 0.89  
 10 5.58 ± 7.24 6.47 0.49 6.33 ± 5.05 5.73 0.55  
 11 7.36 ± 8.53 7.97 0.68 6.55 ± 5.44 6.02 0.58  
 12 3.52 ± 2.17 2.92 0.33 4.39 ± 2.60 3.60 0.40  
 13 6.09 ± 5.23 5.68 0.54 4.49 ± 2.66 3.69 0.41  
 14 3.88 ± 4.28 4.09 0.35 3.95 ± 2.40 3.27 0.36  
 15 4.69 ± 4.59 4.64 0.42 4.08 ± 2.41 3.35 0.37  
 16 4.42 ± 3.75 4.10 0.41 4.11 ± 2.44 3.38 0.37  
 17 4.54 ± 3.22 3.94 0.41 4.30 ± 2.54 3.53 0.39  
 18 4.12 ± 5.28 4.74 0.40 4.25 ± 2.60 3.52 0.39  
 19 4.75 ± 5.33 5.05 0.44 4.07 ± 2.39 3.33 0.37  
 20 3.42 ± 2.02 2.81 0.33 3.98 ± 2.22 3.22 0.38  
 21 4.96 ± 3.18 4.17 0.47 3.86 ± 2.24 3.15 0.35  
 22 3.88 ± 2.42 3.24 0.39 4.65 ± 2.69 3.80 0.45  
 23 3.76 ± 2.22 3.09 0.36 4.69 ± 2.66 3.82 0.46  
 General 4.80 ± 8.23 6.75 0.44 4.92 ± 4.64 4.78 0.45  
Fig. 7. Visualization of pose estimation interpretability and keypoint accuracy. The model’s activation heatmaps are overlaid on representative dorsal (left) and 
lateral (right) test images. Magnified insets illustrate the Euclidean Pixel Error (EPE), showing the distance between the model’s prediction (red point) and the 
ground truth (blue point).
11 
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Table 5
Comparative performance analysis of regression methods for 2D keypoint to 3D measurement conversion. All models were evaluated using 2D pose estimations 
generated by the baseline ViT-Pose Huge configuration. Abbreviations: IC% (MAE): 95% Confidence Interval, SGB: Stochastic Gradient Boosting.
 Method MAE (cm) IC 95% (MAE) RMSE (cm) MAPE (%) 𝑝-value (vs. SVM) 
 Ridge 0.10 ± 0.30 [0.09, 0.11] 0.32 5.14 4.0e−2  
 SGB 0.09 ± 0.27 [0.08, 0.10] 0.28 4.79 3.0e−2  
 Quantile 0.10 ± 0.30 [0.09, 0.11] 0.32 5.02 1.5e−2  
 MLP 0.14 ± 0.51 [0.13, 0.15] 0.49 5.60 1.0e−4  
 Linear 0.12 ± 0.35 [0.11, 0.13] 0.37 5.44 9.0e−3  
 Log-Lin 0.15 ± 0.47 [0.13, 0.16] 0.48 5.78 4.0e−4  
 Lin-Log 0.10 ± 0.30 [0.09, 0.11] 0.31 5.13 2.5e−2  
 Log-Log 0.12 ± 0.38 [0.11, 0.14] 0.40 5.46 5.0e−3  
 Polynomial 0.08 ± 0.26 [0.07, 0.09] 0.27 4.64 8.3e−2  
 k-neighbors 0.08 ± 0.26 [0.07, 0.09] 0.27 4.67 6.0e−2  
 Kernel 0.11 ± 0.34 [0.10, 0.12] 0.44 5.73 2.0e−3  
 Decision Tree 0.09 ± 0.27 [0.08, 0.10] 0.30 4.95 3.1e−2  
 Random Forest 0.08 ± 0.27 [0.08, 0.09] 0.29 4.83 1.5e−1  
 SVM 0.08 ± 0.25 [0.07, 0.08] 0.25 4.56 -  
Table 6
Comparative analysis of the 3D error between ground truth and Imashrimp’s predicted measurements for all white shrimp morphological variables according to 
the conversion method. (Significance test: *** 𝑝 < 0.001).
 Conversion not using regression Conversion using SVM regression
 Variable MAE (cm) IC 95% (MAE) RMSE (cm) MAPE (%) Variable MAE (cm) IC 95% (MAE) RMSE (cm) MAPE (%) 
 total 0.92 ± 1.06 [0.75, 1.10] 1.31 6.55 total 0.54 ± 0.69 [0.45, 0.62] 0.77 3.76  
 abdomen 0.22 ± 0.23 [0.75, 1.10] 0.29 2.31 abdomen 0.20 ± 0.23 [0.17, 0.24] 0.26 2.03  
 l_1seg 0.10 ± 0.12 [0.09, 0.13] 0.14 8.00 l_1seg 0.09 ± 0.11 [0.08, 0.10] 0.11 6.76  
 l_2seg 0.12 ± 0.11 [0.09, 0.12] 0.15 10.79 l_2seg 0.07 ± 0.09 [0.06, 0.08] 0.09 6.18  
 l_3seg 0.10 ± 0.14 [0.09, 0.12] 0.15 7.89 l_3seg 0.09 ± 0.12 [0.07, 0.10] 0.12 6.29  
 l_4seg 0.16 ± 0.11 [0.16, 0.19] 0.18 16.47 l_4seg 0.09 ± 0.11 [0.08, 0.10] 0.11 8.34  
 l_5seg 0.22 ± 1.09 [0.10, 0.34] 1.09 11.30 l_5seg 0.20 ± 1.10 [0.05, 0.30] 1.11 7.79  
 l_6seg 0.12 ± 0.10 [0.12, 0.15] 0.15 6.21 l_6seg 0.06 ± 0.08 [0.06, 0.07] 0.08 3.25  
 l_head 0.30 ± 0.38 [0.25, 0.34] 0.41 6.07 l_head 0.14 ± 0.19 [0.11, 0.16] 0.21 2.76  
 Lengths 0.17 ± 0.46 [0.15, 0.19] 0.46 9.42 Lengths 0.10 ± 0.43 [0.08, 0.12] 0.43 5.80  
 h_head 0.12 ± 0.18 [0.10, 0.15] 0.18 5.67 h_head 0.11 ± 0.16 [0.08, 0.13] 0.17 4.86  
 h_1seg 0.10 ± 0.12 [0.08, 0.11] 0.12 4.70 h_1seg 0.08 ± 0.10 [0.07, 0.09] 0.10 3.70  
 h_2seg 0.08 ± 0.10 [0.06, 0.09] 0.11 3.61 h_2seg 0.07 ± 0.10 [0.05, 0.08] 0.10 3.03  
 h_3seg 0.07 ± 0.10 [0.06, 0.08] 0.10 3.15 h_3seg 0.07 ± 0.10 [0.06, 0.08] 0.10 2.84  
 h_4seg 0.08 ± 0.09 [0.07, 0.09] 0.11 3.78 h_4seg 0.06 ± 0.09 [0.04, 0.06] 0.09 2.48  
 h_5seg 0.09 ± 0.11 [0.08, 0.11] 0.12 4.83 h_5seg 0.07 ± 0.10 [0.06, 0.09] 0.10 3.63  
 h_6seg 0.04 ± 0.08 [0.03, 0.05] 0.08 2.69 h_6seg 0.05 ± 0.08 [0.04, 0.06] 0.08 2.96  
 Heights 0.08 ± 0.12 [0.08, 0.09] 0.12 4.06 Heights 0.07 ± 0.11 [0.06, 0.08] 0.11 3.36  
 w_head 0.13 ± 0.11 [0.13, 0.16] 0.16 8.20 w_head 0.08 ± 0.1 [0.06, 0.09] 0.10 4.87  
 w_1seg 0.14 ± 0.10 [0.12, 0.15] 0.16 9.44 w_1seg 0.07 ± 0.08 [0.06, 0.07] 0.08 4.50  
 w_2seg 0.20 ± 0.07 [0.19, 0.21] 0.21 13.97 w_2seg 0.06 ± 0.07 [0.05, 0.06] 0.07 3.82  
 w_3seg 0.15 ± 0.06 [0.14, 0.17] 0.17 12.32 w_3seg 0.04 ± 0.06 [0.04, 0.05] 0.06 3.42  
 w_4seg 0.12 ± 0.06 [0.12, 0.14] 0.14 11.48 w_4seg 0.04 ± 0.05 [0.04, 0.05] 0.06 4.02  
 w_5seg 0.10 ± 0.06 [0.10, 0.12] 0.11 10.03 w_5seg 0.05 ± 0.06 [0.04, 0.05] 0.06 4.75  
 w_6seg 0.07 ± 0.06 [0.07, 0.09] 0.08 9.20 w_6seg 0.04 ± 0.05 [0.04, 0.05] 0.05 5.58  
 Widths 0.13 ± 0.09 [0.12, 0.14] 0.15 10.49 Widths 0.05 ± 0.07 [0.05, 0.06] 0.07 4.50  
 General 0.13 ± 0.28 [0.12, 0.14] 0.28 8.14 General 0.08 ± 0.25*** [0.07, 0.08] 0.25 4.56  
To validate the observed differences, a paired Wilcoxon signed-
rank test was performed on the error distributions of the two methods. 
The ‘‘General’’ MAE for the SVM regression approach was found to be 
statistically significant (𝑝 = 0.00039), confirming its superiority over the 
non-regression method. This significance is denoted in the table with 
asterisks (*** 𝑝 < 0.001).

To clarify the aggregation method used in Table  6, the metrics for 
each ‘‘Morphological Variable’’ (e.g., ’l_head’) are calculated by averag-
ing the errors for that specific measurement across all test specimens. 
The ‘‘General’’ metrics are computed by first pooling all individual 
measurements (all variables from all specimens) into a single dataset, 
and then calculating the overall MAE, RMSE, and MAPE from this com-
plete pool. The ‘‘General’’ MAE, therefore, represents the average error 
expected from any single measurement performed by the Imashrimp 
system.
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Morphological lengths were calculated from keypoints distributed 
along the shrimp virtual skeleton in both lateral and dorsal point of 
views (Fig.  6). To determine the optimal point of view for retrieving 
length variables, the test subset with the same animals photographed 
laterally and dorsally was used to compare which point of view pro-
vided the most accurate length measurements. The comparison results 
are presented in Table  7.

A paired Wilcoxon signed-rank test confirmed that the difference 
in the general ‘Lengths’ metric between the two point of views is 
statistically significant (𝑝 = 0.019). Based on this result, and to ensure 
maximum precision for genetic selection, our system is configured to 
derive length measurements exclusively from the Lateral point of view, 
rather than using Dorsal estimations as a fallback.

Overall we can see that our regression obtains measurements with 
less than a millimetre of error on average. When assessing the full 
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Table 7
Comparative error analysis of using Lateral or Dorsal point of view to measure length variables. (Significance test: * 𝑝 < 0.05).
 Lateral Point of View Network Dorsal Point of View Network
 Variable MAE (cm) IC 95% (MAE) RMSE (cm) MAPE (%) Variable MAE (cm) IC 95% (MAE) RMSE (cm) MAPE (%) 
 l_1seg 0.09 ± 0.11 [0.08, 0.10] 0.11 6.76 l_1seg 0.10 ± 0.11 [0.09, 0.11] 0.11 7.05  
 l_2seg 0.07 ± 0.09 [0.06, 0.08] 0.09 6.18 l_2seg 0.07 ± 0.10 [0.06, 0.09] 0.10 6.80  
 l_3seg 0.09 ± 0.12 [0.07, 0.10] 0.12 6.29 l_3seg 0.09 ± 0.13 [0.08, 0.11] 0.13 6.70  
 l_4seg 0.09 ± 0.11 [0.08, 0.10] 0.11 8.34 l_4seg 0.09 ± 0.11 [0.08, 0.10] 0.11 8.45  
 l_5seg 0.20 ± 1.10 [0.05, 0.30] 1.11 7.79 l_5seg 0.19 ± 1.09 [0.06, 0.30] 1.09 7.88  
 l_6seg 0.06 ± 0.08 [0.06, 0.07] 0.08 3.25 l_6seg 0.07 ± 0.09 [0.07, 0.09] 0.09 3.67  
 l_head 0.14 ± 0.19 [0.11, 0.16] 0.21 2.75 l_head 0.19 ± 0.26 [0.17, 0.23] 0.26 3.93  
 Lengths 0.10* ± 0.43 [0.08, 0.12] 0.43 5.80 Lengths 0.12 ± 0.43 [0.01, 0.14] 0.43 6.32  
length estimation of the shrimp the error is also quite low, 5 millime-
tres, but is affected by the detection of the rostrum. This in any case is 
not very relevant as morphological measurements for the full length but 
ignoring the rostrum yields an much lower overall error of 2 millimetre. 
It has to be underlined that in the are that we ignore the animal has 
no meat content.

6.4. Ablation study

To quantify the contribution of our system’s core components and 
validate our architectural choices, we conducted a comprehensive ab-
lation study. We established our baseline model (the full Imashrimp 
system: ViT-Pose Huge, RGB-D input, and both discriminators active) 
and systematically ablated three key aspects: (1) the dual discrimina-
tion modules, (2) the contribution of the depth (D) channel, and (3) the 
effect of the pose estimation model size. The results of this study are 
presented in Table  8, reporting 2D pose estimation performance (mAP 
and PCK). We now describe in detail the results for each of the ablated 
parameters:

Impact of Discrimination Modules: The first set of experiments 
(Rows 1–3) demonstrates the critical role of the discriminators. Dis-
abling both the point of view (POV) and rostrum integrity (RI) modules 
causes the mAP to drop significantly from 96.84% to 91.62%, as the 
system attempts to process images with the incorrect pose estimation 
models.

Disabling only the RI, or only the POV, modules also results in a 
substantial performance degradation (93.53% mAP and 92.62% mAP, 
respectively). It is worth noting that the ablation of the discriminator 
module implies leaving the initial human error, that was quantified in 
Table  2.

Impact of Depth Channel (RGB-D vs. RGB): The resulting mAP 
dropped from 96.84% to 90.81%. This shows the addition of depth 
information to be a godd regularizer for keypoint detection in our case.

Impact of Model Size: We compared our ViTPose Huge model 
against its smaller variants (Large, Base, and Small). The ViTPose 
Huge model (96.84% mAP) significantly outperforms all smaller archi-
tectures, which achieved mAP scores clustering between 89.89% and 
90.70%. This result justifies our choice of the larger ‘‘Huge’’ architec-
ture, indicating that the complexity of the shrimp pose estimation task 
benefits from the increased model capacity.

6.5. End-to-end results

Quantitative results of the complete system can be seen in Table  6, 
while qualitative results are shown in Fig.  8 where keypoint outputs 
are combined into a skeleton and visually represented. Furthermore, 
the size regressor converts pixel-based morphological variables into 
centimetres.

To demonstrate the qualitative robustness and versatility of the 
pose estimation system, predictions were performed on a dataset with 
scenarios not included in training. These include images varying back-
grounds and different camera distances. Examples of these results are 
presented in Fig.  9.
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7. Discussion and conclusion

The primary contribution of this work is the introduction of
Imashrimp, an artificial intelligence (AI) system comprising multiple 
integrated modules designed to automate morphological analysis of 
white shrimp (Penaeus vannamei) and minimize human error. To our 
knowledge, no previous studies have applied body pose estimation 
techniques to shrimp or performed regression analysis of 23 morpho-
logical variables using RGB-D images. Another key feature is its dual 
discrimination modules, which learn to identify shrimp point of view 
(lateral or dorsal) and rostrum integrity (good or broken), which, as 
shown, significantly reduces human annotation error.

The results are promising and could improve genetic selection by 
automating phenotypic analyses, enabling larger population studies 
with fewer errors. For the complete test subset of 1245 images, discrim-
inators operating as a two-factor authentication system reduced human 
error in point of view discrimination from 0.64% to 0% and in rostrum 
integrity discrimination from 10.44% to 1.04%.

The pose estimation module demonstrated robust performance, 
which served as a precise foundation for the subsequent 2D-to-3D mea-
surement regression. Our SVM-based conversion module successfully 
retrieved morphological variables, achieving a general Mean Absolute 
Error (MAE) of 0.08 ± 0.25 cm.

Obtaining such high precision 3D measurements opens a wide ar-
ray of possibilities. Imashrimp will greatly increase the number of 
specimens that are considered for genetic selection, making the ge-
netic selection much more robust and providing significant economic 
benefits to aquaculture companies that employ such system. Specifi-
cally, manual phenotyping of 23 variables on dead specimens typically 
requires two operators and approximately 9 min per animal, while 
even a simplified analysis on live animals (4 variables) takes about 
2 min. In contrast, Imashrimp requires only a single operator for image 
acquisition and processes the comprehensive morphometric data in just 
32 ms per image, representing a massive reduction in labour costs 
and time. In terms of operational efficiency, the system achieves an 
inference speed of approximately 31 Frames Per Second (FPS) (32 ms 
per image) on a workstation with a dedicated Graphics Processing 
Unit (GPU) (see Appendix  A), demonstrating its feasibility for real-time 
high-throughput applications in industrial breeding facilities..

8. Limitations and future work

Despite this performance, we acknowledge several limitations that 
define the scope of this work:

First, the model was trained and validated exclusively in a con-
trolled laboratory setting with uniform backgrounds and lighting. Its 
robustness to ’in-the-wild’ conditions, such as the variable lighting, 
water reflections, and occlusions found in industrial processing plants, 
has not yet been quantified experimentally (e.g., via PCK drop analysis) 
due to the lack of a ground-truth annotated dataset for these unstruc-
tured environments. Therefore, the current ‘‘in-the-wild’’ results (Fig. 
9) remain qualitative demonstrations of potential transferability.
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Table 8
Ablation study evaluating the impact of discriminators Point of View/Rostrum Integrity (POV/RI), input data (RGB-D vs. RGB), 
and model size (ViTPose variant) on pose estimation accuracy.
 Discrimination Pose Estimation
 POV RI Input Model mAP 50:95 (%) PCK@10px (%) 
 False False RGB-D ViT-Pose Huge 91.62 89.88  
 True False RGB-D ViT-Pose Huge 93.53 91.45  
 False True RGB-D ViT-Pose Huge 92.62 90.75  
 True True RGB ViT-Pose Huge 90.81 82.98  
 True True RGB-D ViT-Pose Large 90.09 82.83  
 True True RGB-D ViT-Pose Base 89.89 83.01  
 True True RGB-D ViT-Pose Small 90.70 83.39  
 True True RGB-D ViT-Pose Huge 96.84 91.67  
Fig. 8. Test results for the whole proposed system, in which classify information, keypoints and specimen morphological variables in centimetres are shown 
for each detected shrimp instance. The images show several results of the test dataset depending on the Pose Estimation network by which they have been 
processed: (1) Lateral Pose Estimation - 23 keypoints, (2) Dorsal Pose Estimation - 23 keypoints, (3) Lateral Pose Estimation - 22 keypoints and (4) 
Dorsal Pose Estimation - 22 keypoints.
Second, the current system is dependent on 4-channel RGB-D data 
to achieve its reported accuracy. This dependence on specialized cam-
eras limits its immediate applicability in settings equipped only with 
standard RGB cameras. Future work will focus on bridging this perfor-
mance gap, potentially through domain adaptation or advanced data 
augmentation, to create a robust system that relies solely on standard 
RGB imagery.

Second, the current system is dependent on 4-channel RGB-D data to 
achieve its reported accuracy. This dependence on specialized cameras 
limits its immediate applicability in settings equipped only with stan-
dard RGB cameras. While utilizing standard RGB cameras would reduce 
hardware costs, our ablation results indicate that this significantly 
compromises performance (dropping from 96.84% to 90.81% mAP) 
while offering a negligible improvement in inference speed (31 ms vs. 
32 ms). Consequently, to maintain the precision required for genetic 
selection, the current minimum viable hardware configuration for field 
adoption must include a depth-sensing (RGB-D) capability and a CUDA-
enabled GPU. Future work will focus on bridging this performance gap, 
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potentially through domain adaptation or advanced data augmentation, 
to create a robust system that relies solely on standard RGB imagery.

Third, the model was trained and validated exclusively on Penaeus 
vannamei. While generalization to morphologically distinct species 
would require a complete re-annotation, we hypothesize that the 
IMASHRIMP framework could be directly applied to other commer-
cially relevant species within the same Litopenaeus subgenus (e.g.,
Litopenaeus stylirostris or Litopenaeus setiferus) due to their similar mor-
phology. Consequently, we anticipate that extending the system to 
these related species would require either zero or, at most, limited 
labelling (transfer learning) for validation, rather than a full dataset 
overhaul.

Finally, as the dataset is proprietary due to commercial confiden-
tiality, external reproducibility is limited, a factor we have aimed to 
mitigate through detailed methodological descriptions. These limita-
tions also highlight future applications, such as employing Imashrimp 
in packaging plants where manual measurements are currently infea-
sible. This would provide companies with richer data for strategic 
planning.
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Fig. 9. Evaluation of the proposed system in-the-wild, The proposes system is tested in an array of situations not seen during training and classification 
information and keypoints are shown for each detected shrimp instance. The images show several results depending on the experiment: First and second row: 
Different backgrounds at the same distance and Third row: Different distances to the plane 30 cm, 40 cm and 60 cm.
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Appendix A. Implementation, dataset, and hardware details

To ensure methodological transparency and aid reproducibility, this 
appendix provides detailed information on the dataset, training hyper-
parameters, and the hardware environment used for all experiments.

A.1. Hardware and inference performance

All training and inference benchmarks were conducted on the hard-
ware configuration detailed in Table  A.9. The inference performance of 
the final, end-to-end Imashrimp system (including discrimination, pose 
estimation, and regression) is reported in Table  A.10.

A.2. Dataset details

We now detail the whole process of how the dataset was created, 
the tools used, the precise process, and the final characteristics of the 
constructed dataset.
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Table A.9
Hardware Specifications. Abbreviations: CPU: Central Processing Unit; GB: 
Gigabytes; GPU: Graphics Processing Unit; RAM: Random Access Memory; 
VRAM: Video Random Access Memory.
 Component Specification  
 CPU AMD Ryzen 9 7950X 16-Core Processor 
 GPU NVIDIA GeForce RTX 3090  
 VRAM 24 GB  
 System RAM 64 GB  
 Operating System Windows 10 Enterprise 64-bit  

A.2.1. Data acquisition and labelling protocol
As described in Section 5.1, all images were captured in a controlled 

laboratory setting with constant, uniform lighting and a consistent 
black background.

The labelling protocol involved several stages to ensure high-quality 
annotations:

1. Initial Training: Annotators were instructed by morphological 
experts on the 23 keypoints and the use of the CVAT annotation 
tool.

2. Manual Annotation: The initial batch of images was fully an-
notated manually.

3. AI-Assisted Annotation: Once the pose estimation models
achieved sufficient accuracy, an auto-labelling pipeline was 
implemented. Annotators then focused on correcting minor in-
accuracies, significantly speeding up the process.

4. Expert Review: Crucially, every annotation (both manual and 
corrected) was subsequently reviewed and validated by a mor-
phological expert to ensure correctness and consistency. This 
two-step process (annotation + expert review) served to maxi-
mize inter-annotator reliability.

A.2.2. Dataset split and class balance
The full dataset of 12,367 images was split into training (80%), 

validation (10%), and test (10%) sets. This split was performed at the
specimen level, ensuring that no single shrimp appears in more than 
one set, which validates the model’s ability to generalize to unseen 
individuals.

The specific datasets for the pose estimation models were derived 
from this split as follows:

• 23-Keypoint Models (e.g., lateral-23): To train the models for the 
complete skeleton, only images where the rostrum was intact 
(‘‘rostrum good’’) were selected. Images corresponding to ‘‘ros-
trum broken’’ were excluded from this dataset, as they physically 
lack keypoint 1.

• 22-Keypoint Models (e.g., lateral-22): To train the models that 
operate without the rostrum tip, the entire dataset (12,367 im-
ages) was used, including both ‘‘rostrum good’’ and ‘‘rostrum 
broken’’ images. For this dataset, the ground truth was adapted 
by systematically removing keypoint 1 from all annotations.

The class balance for the discriminator modules and the resulting 
image counts for each pose estimation model are detailed in Tables 
A.11 and A.12, respectively.

A.3. Training hyperparameters and data augmentation

All models were trained using the parameters specified in
Table  A.13. The pose estimation models were initialized from ViTPose 
Huge weights pre-trained on MS-COCO/MPII, with the input layer 
modified to accept 4 channels (RGB-D).

Data Augmentation (Pose Estimation) To ensure robustness, the 
following augmentation pipeline was applied sequentially during the 
training of all pose estimation models:
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Table A.10
System Performance and Resource Usage. Abbreviations: FPS: Frames Per 
Second, ms: milliseconds.
 Metric Training Test  
 Inference Time per Image 140 ms 32 ms  
 Frames Per Second 7 FPS 32 FPS 
 VRAM Usage 22 GB 8 GB  
 GPU Core Load 82% 35%  
 CPU Load 20% 20%  

Table A.11
Class balance for discriminator modules.
 Module Class Train Validation Test Total  
 Point of View Lateral 6816 821 831 8468  
 Dorsal 3079 406 414 3899  
 Rostrum Integrity Good 8700 1047 1017 10764 
 Broken 1195 180 228 1603  
 Total Images 9895 1227 1245 12367 

Table A.12
Image counts for pose estimation models.
 Model Train Validation Test Total 
 Lateral-23 5997 701 679 7377 
 Lateral-22 6816 821 831 8468 
 Dorsal-23 2703 346 338 3387 
 Dorsal-22 3079 406 414 3899 

• Image Loading: Load the 4-channel RGB-D image.
• Geometric Augmentation I (Flip): Apply a top-down random 
flip with a 50% probability.

• Geometric Augmentation II (Half-Body): Apply a half-body 
transform, focusing on a subset of 8 keypoints with a 30% prob-
ability.

• Geometric Augmentation III (Scale/Rotation): Apply random 
scaling (up to 0.5 scale factor) and random rotation (up to 40 
degrees).

• Affine Transform: Apply the final affine transformation based on 
the geometric augmentations.

• Tensor Conversion: Convert the augmented image to a tensor.
• Normalization: Normalize the tensor using pre-calculated mean
and std values.

• Target Generation: Generate the target heatmaps from keypoint 
coordinates (using a sigma of 2).

• Data Collection: Collect the final keys required for model train-
ing.

Appendix B. Detailed 2D error and confidence score analysis

This section provides a detailed, stratified analysis of the 2D pose 
estimation performance. The pixel predictions from the test set were 
compared to the annotated ground truth to provide a granular 2D 
error analysis. These errors are presented in Tables  B.14 and B.15, 
showing the performance for each keypoint across all four specialized 
sub-models (Lateral-23, Lateral-22, Dorsal-23, and Dorsal-22). This 
table includes standard 2D error metrics (EPE (px), RMSE (px), and 
MAPE (%)) and a ‘Score’ column, which reports the average heatmap 
confidence (i.e., heatmap variance) for each keypoint as a measure of 
the model’s prediction certainty.

Data availability

The authors do not have permission to share data.
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Table A.13
Training hyperparameters. Abbreviations: MSE: Mean Square Error; BCE: Binary Cross-Entropy; BS: Batch Size; LR: Learning Rate; 
Funct.: Function; ViT-Pose-H: Vit-Pose-Huge.
 Module Architecture Optimizer Loss Funct. LR BS Epochs Checkpoint Criterion  
 Point of View Disc. ResNet-50 Adam BCELoss 0.00200 256 5 Best Validation Error 
 Rostrum Disc. ResNet-50 Adam BCELoss 0.00050 256 5 Best Validation Error 
 Pose Est. (Dorsal-22) RGBD ViTPose-H Adam JointsMSELoss 0.00010 16 210 Best Validation Loss  
 Pose Est. (Dorsal-23) RGBD ViTPose-H Adam JointsMSELoss 0.00070 16 210 Best Validation Loss  
 Pose Est. (Lateral-22) RGBD ViTPose-H Adam JointsMSELoss 0.00007 16 210 Best Validation Loss  
 Pose Est. (Lateral-23) RGBD ViTPose-H Adam JointsMSELoss 0.00007 16 210 Best Validation Loss  
Table B.14
Comparative 2D error analysis for Dorsal sub-models (Dorsal-22 and Dorsal-23). 
 Point Dorsal-22 sub-model Dorsal-23 sub-model
 EPE (px) RMSE (px) MAPE (%) Score EPE (px) RMSE (px) MAPE (%) Score 
 1 – – – – 12.44 ± 15.71 14.17 1.17 0.71  
 2 3.18 ± 2.23 2.74 0.30 0.95 3.77 ± 2.10 3.05 0.35 0.93  
 3 3.46 ± 2.02 2.84 0.32 0.94 3.41 ± 1.91 2.76 0.31 0.94  
 4 4.05 ± 2.62 3.41 0.36 0.93 4.04 ± 2.76 3.46 0.36 0.92  
 5 5.26 ± 3.57 4.50 0.45 0.91 5.04 ± 3.22 4.23 0.45 0.93  
 6 2.98 ± 1.62 2.40 0.27 0.93 3.36 ± 1.97 2.75 0.31 0.94  
 7 3.07 ± 1.69 2.48 0.30 0.95 3.21 ± 1.80 2.60 0.31 0.93  
 8 2.89 ± 1.63 2.35 0.28 0.98 2.97 ± 1.70 2.42 0.30 0.93  
 9 7.15 ± 4.13 5.84 0.65 0.80 8.21 ± 3.68 6.36 0.85 0.82  
 10 8.61 ± 9.17 8.89 0.72 0.81 9.79 ± 5.21 7.84 0.84 0.75  
 11 8.74 ± 9.56 9.16 0.76 0.83 9.58 ± 5.55 7.83 0.83 0.76  
 12 4.02 ± 2.88 3.50 0.36 0.96 4.08 ± 2.64 3.44 0.35 0.95  
 13 3.85 ± 2.73 3.34 0.34 0.95 4.14 ± 2.71 3.50 0.37 0.96  
 14 3.42 ± 2.51 3.00 0.30 0.96 3.91 ± 2.29 3.20 0.34 0.96  
 15 3.30 ± 2.14 2.78 0.30 0.95 3.75 ± 2.32 3.12 0.33 0.96  
 16 3.78 ± 2.62 3.25 0.32 0.96 4.20 ± 4.05 4.13 0.37 0.95  
 17 3.78 ± 2.54 3.22 0.32 0.95 4.11 ± 2.76 3.50 0.36 0.94  
 18 3.76 ± 2.58 3.22 0.32 0.94 4.10 ± 2.70 3.47 0.37 0.96  
 19 3.67 ± 2.35 3.08 0.31 0.94 3.91 ± 2.67 3.35 0.34 0.95  
 20 3.09 ± 2.08 2.64 0.27 0.96 3.41 ± 2.99 3.21 0.32 0.96  
 21 3.11 ± 2.01 2.62 0.28 0.96 3.34 ± 2.89 3.13 0.31 0.96  
 22 3.96 ± 2.68 3.38 0.38 0.94 4.51 ± 3.06 3.85 0.43 0.93  
 23 3.98 ± 2.74 3.42 0.37 0.95 4.44 ± 3.21 3.87 0.42 0.93  
 General 22KP 4.23 ± 4.08 4.15 0.38 0.93 4.52 ± 3.15 3.90 0.42 0.89  
 General 23KP – – – – 4.87 ± 4.78 4.82 0.45 0.92  
Table B.15
Comparative 2D error analysis for Lateral sub-models (Lateral-22 and Lateral-23). 
 Point Lateral-22 sub-model Lateral-23 sub-model
 EPE (px) RMSE (px) MAPE (%) Score EPE (px) RMSE (px) MAPE (%) Score 
 1 – – – – 11.66 ± 35.24 26.25 0.88 0.74  
 2 3.01 ± 1.84 2.49 0.28 0.94 2.74 ± 1.53 2.22 0.25 0.96  
 3 3.66 ± 2.38 3.09 0.32 0.93 2.99 ± 1.90 2.51 0.27 0.94  
 4 5.12 ± 3.88 4.54 0.45 0.91 3.88 ± 3.10 3.52 0.35 0.93  
 5 4.80 ± 3.31 4.12 0.43 0.89 4.29 ± 3.11 3.75 0.40 0.93  
 6 3.27 ± 1.79 2.64 0.31 0.93 3.17 ± 2.11 2.69 0.30 0.94  
 7 3.19 ± 2.09 2.70 0.32 0.94 2.79 ± 1.75 2.33 0.27 0.95  
 8 3.40 ± 2.03 2.80 0.35 0.94 3.15 ± 2.06 2.66 0.32 0.95  
 9 7.62 ± 3.25 5.86 0.78 0.74 7.53 ± 13.54 10.96 0.65 0.80  
 10 8.97 ± 4.55 7.12 0.76 0.77 9.55 ± 6.03 7.99 0.82 0.78  
 11 11.10 ± 8.83 10.03 1.02 0.80 6.00 ± 6.58 6.30 0.56 0.87  
 12 3.69 ± 2.53 3.17 0.33 0.92 3.09 ± 1.89 2.56 0.27 0.94  
 13 7.76 ± 6.95 7.37 0.70 0.83 4.97 ± 4.58 4.78 0.44 0.92  
 14 3.97 ± 2.66 3.38 0.36 0.92 3.37 ± 4.52 3.98 0.30 0.94  
 15 4.78 ± 3.00 3.99 0.43 0.90 3.93 ± 4.70 4.34 0.35 0.93  
 16 4.59 ± 3.28 3.99 0.40 0.91 3.93 ± 6.13 5.15 0.37 0.93  
 17 4.53 ± 3.15 3.91 0.41 0.89 3.93 ± 5.45 4.75 0.37 0.93  
 18 3.90 ± 2.80 3.40 0.37 0.92 3.59 ± 5.49 4.64 0.35 0.94  
 19 4.77 ± 3.48 4.18 0.44 0.89 4.09 ± 5.10 4.62 0.39 0.93  
 20 3.35 ± 2.08 2.79 0.33 0.94 2.87 ± 1.71 2.36 0.28 0.94  
 21 5.55 ± 3.99 4.83 0.52 0.88 4.40 ± 5.08 4.75 0.42 0.93  
 22 3.41 ± 2.14 2.85 0.36 0.94 3.34 ± 2.14 2.81 0.34 0.96  
 23 3.42 ± 1.91 2.77 0.33 0.94 3.38 ± 2.10 2.82 0.32 0.95  
 General 22KP 4.90 ± 4.21 4.57 0.46 0.89 4.14 ± 3.65 3.90 0.38 0.90  
 General 23KP – – – – 4.46 ± 8.31 6.67 0.40 0.92  
17 
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