Identificador persistente para citar o vincular este elemento:
https://accedacris.ulpgc.es/jspui/handle/10553/154922
| Campo DC | Valor | idioma |
|---|---|---|
| dc.contributor.author | Abiam, Remache Gonzalez | en_US |
| dc.contributor.author | Meriem, Chagour | en_US |
| dc.contributor.author | Timon, Bijan Ruth | en_US |
| dc.contributor.author | Raul, Trapiella Canedo | en_US |
| dc.contributor.author | Marina, Martinez Soler | en_US |
| dc.contributor.author | Alvaro, Lorenzo Felipe | en_US |
| dc.contributor.author | Hyun-Suk, Shin | en_US |
| dc.contributor.author | Maria-Jesus, Zamorano Serrano | en_US |
| dc.contributor.author | Ricardo, Torres | en_US |
| dc.contributor.author | Juan-Antonio, Castillo Parra | en_US |
| dc.contributor.author | Eduardo, Reyes Abad | en_US |
| dc.contributor.author | Ferrer Ballester, Miguel Ángel | en_US |
| dc.contributor.author | Afonso López, Juan Manuel | en_US |
| dc.contributor.author | Hernández Tejera, Francisco Mario | en_US |
| dc.contributor.author | Penate-Sanchez, Adrian | en_US |
| dc.date.accessioned | 2026-01-13T09:07:53Z | - |
| dc.date.available | 2026-01-13T09:07:53Z | - |
| dc.date.issued | 2026 | en_US |
| dc.identifier.issn | 0952-1976 | en_US |
| dc.identifier.other | WoS | - |
| dc.identifier.uri | https://accedacris.ulpgc.es/jspui/handle/10553/154922 | - |
| dc.description.abstract | Manual morphological analysis for genetic selection in Penaeus vannamei aquaculture is a slow, error-prone bottleneck. We introduce Imashrimp, an automated system that uses colour and depth images to optimize this task by adapting deep learning and computer vision techniques to shrimp morphology. Imashrimp incorporates two discrimination modules to classify images by the point of view and determine rostrum integrity. These modules function as a "two-factor authentication" (human and Artificial Intelligence) system to validate annotations; this approach reduced metadata annotation errors, cutting point of view classification errors from 0.64% to 0% and rostrum integrity errors from 10.44% to 1.04%. A transformer-based pose estimation module predicts 23 keypoints on the shrimp's skeleton, achieving a general Mean Average Precision of 96.84% and a Percentage of Correct Keypoints of 91.67%. The resulting Two-Dimensional measurements are transformed into Three-Dimensional measurements using a Support Vector Machine regression. By achieving a final Mean Absolute Error (MAE) of 0.08 +/- 0.25 cm, IMASHRIMP demonstrates the potential to automate and accelerate shrimp morphological analysis, enhancing the efficiency of genetic selection and contributing to more sustainable aquaculture practices. | en_US |
| dc.language | eng | en_US |
| dc.relation.ispartof | Engineering Applications of Artificial Intelligence | en_US |
| dc.source | Engineering Applications Of Artificial Intelligence[ISSN 0952-1976],v. 165, (Febrero 2026) | en_US |
| dc.subject | Investigación | en_US |
| dc.subject.other | Shrimp Size Estimation | en_US |
| dc.subject.other | Penaeus Vannamei | en_US |
| dc.subject.other | Genetic Assessment | en_US |
| dc.subject.other | Pose Estimation | en_US |
| dc.subject.other | Computer Vision | en_US |
| dc.subject.other | Deep Learning | en_US |
| dc.title | Automatic white shrimp (Penaeus vannamei) biometrical analysis from laboratory images using computer vision and deep learning | en_US |
| dc.type | info:eu-repo/semantics/Article | en_US |
| dc.type | Article | en_US |
| dc.identifier.doi | 10.1016/j.engappai.2025.113493 | en_US |
| dc.identifier.isi | 001641097000001 | - |
| dc.identifier.eissn | 1873-6769 | - |
| dc.relation.volume | 165 | en_US |
| dc.investigacion | Ingeniería y Arquitectura | en_US |
| dc.type2 | Artículo | en_US |
| dc.contributor.daisngid | No ID | - |
| dc.contributor.daisngid | No ID | - |
| dc.contributor.daisngid | No ID | - |
| dc.contributor.daisngid | No ID | - |
| dc.contributor.daisngid | No ID | - |
| dc.contributor.daisngid | No ID | - |
| dc.contributor.daisngid | No ID | - |
| dc.contributor.daisngid | No ID | - |
| dc.contributor.daisngid | No ID | - |
| dc.contributor.daisngid | No ID | - |
| dc.contributor.daisngid | No ID | - |
| dc.contributor.daisngid | No ID | - |
| dc.contributor.daisngid | No ID | - |
| dc.contributor.daisngid | No ID | - |
| dc.contributor.daisngid | No ID | - |
| dc.description.numberofpages | 18 | en_US |
| dc.utils.revision | No | en_US |
| dc.contributor.wosstandard | WOS:Abiam, RG | - |
| dc.contributor.wosstandard | WOS:Meriem, C | - |
| dc.contributor.wosstandard | WOS:Timon, BR | - |
| dc.contributor.wosstandard | WOS:Raúl, TC | - |
| dc.contributor.wosstandard | WOS:Marina, MS | - |
| dc.contributor.wosstandard | WOS:Alvaro, LF | - |
| dc.contributor.wosstandard | WOS:Hyun-Suk, S | - |
| dc.contributor.wosstandard | WOS:Maria-Jesús, ZS | - |
| dc.contributor.wosstandard | WOS:Ricardo, T | - |
| dc.contributor.wosstandard | WOS:Juan-Antonio, CP | - |
| dc.contributor.wosstandard | WOS:Eduardo, RA | - |
| dc.contributor.wosstandard | WOS:Miguel-Angel, FB | - |
| dc.contributor.wosstandard | WOS:Juan-Manuel, AL | - |
| dc.contributor.wosstandard | WOS:Francisco-Mario, HT | - |
| dc.contributor.wosstandard | WOS:Adrian, PS | - |
| dc.date.coverdate | Febrero 2026 | en_US |
| dc.identifier.ulpgc | Sí | en_US |
| dc.contributor.buulpgc | BU-INF | en_US |
| dc.description.sjr | 1,749 | |
| dc.description.jcr | 7,5 | |
| dc.description.sjrq | Q1 | |
| dc.description.jcrq | Q1 | |
| dc.description.scie | SCIE | |
| dc.description.miaricds | 11,0 | |
| item.fulltext | Con texto completo | - |
| item.grantfulltext | open | - |
| crisitem.author.dept | GIR IDeTIC: División de Procesado Digital de Señales | - |
| crisitem.author.dept | IU para el Desarrollo Tecnológico y la Innovación en Comunicaciones (IDeTIC) | - |
| crisitem.author.dept | Departamento de Señales y Comunicaciones | - |
| crisitem.author.dept | GIR Grupo de Investigación en Acuicultura | - |
| crisitem.author.dept | IU de Investigación en Acuicultura Sostenible y Ecosistemas Marinos (IU-Ecoaqua) | - |
| crisitem.author.dept | Departamento de Patología Animal, Producción Animal, Bromatología y Tecnología de Los Alimentos | - |
| crisitem.author.dept | GIR SIANI: Inteligencia Artificial, Redes Neuronales, Aprendizaje Automático e Ingeniería de Datos | - |
| crisitem.author.dept | IU de Sistemas Inteligentes y Aplicaciones Numéricas en Ingeniería | - |
| crisitem.author.dept | Departamento de Informática y Sistemas | - |
| crisitem.author.dept | GIR SIANI: Inteligencia Artificial, Redes Neuronales, Aprendizaje Automático e Ingeniería de Datos | - |
| crisitem.author.dept | IU de Sistemas Inteligentes y Aplicaciones Numéricas en Ingeniería | - |
| crisitem.author.dept | Departamento de Informática y Sistemas | - |
| crisitem.author.orcid | 0000-0002-2924-1225 | - |
| crisitem.author.orcid | 0000-0001-9717-8048 | - |
| crisitem.author.orcid | 0000-0003-2876-3301 | - |
| crisitem.author.parentorg | IU para el Desarrollo Tecnológico y la Innovación en Comunicaciones (IDeTIC) | - |
| crisitem.author.parentorg | IU de Investigación en Acuicultura Sostenible y Ecosistemas Marinos (IU-Ecoaqua) | - |
| crisitem.author.parentorg | IU de Sistemas Inteligentes y Aplicaciones Numéricas en Ingeniería | - |
| crisitem.author.parentorg | IU de Sistemas Inteligentes y Aplicaciones Numéricas en Ingeniería | - |
| crisitem.author.fullName | Ferrer Ballester, Miguel Ángel | - |
| crisitem.author.fullName | Afonso López, Juan Manuel | - |
| crisitem.author.fullName | Hernández Tejera, Francisco Mario | - |
| crisitem.author.fullName | Peñate Sánchez, Adrián | - |
| Colección: | Artículos | |
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.