Identificador persistente para citar o vincular este elemento: https://accedacris.ulpgc.es/jspui/handle/10553/154909
Título: Histological Hyperspectral Breast Cancer Recurrence Database (HistologyHSI-BC Recurrence)
Autores/as: Quintana Quintana, Laura 
Sauras-Colón, Esther
Fiorin, Alessio
Santana Núñez, Javier 
Ortega Sarmiento, Samuel 
Gallardo-Borràs, Noèlia
Fischer-Carles, Alba
Sánchez-Alcántara, Tábata
Fabelo Gómez, Himar Antonio 
Adalid-Llansa, Laia
Mata-Cano, Daniel
Bosch-Príncep, Ramon
Lejeune, Marylène
Marrero Callicó, Gustavo Iván 
López-Pablo, Carlos
Clasificación UNESCO: 3314 Tecnología médica
Fecha de publicación: 2025
Publicación seriada: Scientific data 
Resumen: Metastasis occurs in nearly 1 out of 3 breast cancer (BC) patients and significantly reduces survival rates, particularly in cases of distant metastases. As most distant metastases develop after diagnosis (i.e., recurrence) and remain incurable, there is a critical need for prognostic biomarkers to assess recurrence risk. Multimodal data analysis has emerged as a promising approach to integrate diverse information, offering a more comprehensive perspective. This study introduces the Histology HSI-BC (hyperspectral imaging - breast cancer) Recurrence Database, the first publicly accessible multimodal database designed to advance BC distant recurrence prediction. The database comprises 47 histopathological whole-slide images, 677 hyperspectral (HS) images, and clinical and demographic data from 47 BC patients, of whom 22 (47%) experienced distant recurrence over a 12-year follow-up. Histopathological slides were digitized using a whole-slide scanner and annotated by expert pathologists, while HS images were acquired with an HS camera coupled to a bright-field microscope. This database provides a promising resource for studying BC recurrence prediction and personalized treatment strategies by integrating the aforementioned multimodal data.
URI: https://accedacris.ulpgc.es/jspui/handle/10553/154909
ISSN: 2052-4463
DOI: 10.1038/s41597-025-06157-4
Colección:Artículos
Adobe PDF (3,62 MB)
Vista completa

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.